Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
48180b6c
Commit
48180b6c
authored
Sep 06, 2019
by
高雅喆
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
035053a0
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
66 additions
and
67 deletions
+66
-67
dist_update_portrait_market.py
eda/smart_rank/dist_update_portrait_market.py
+66
-66
dist_update_user_portrait_service.py
eda/smart_rank/dist_update_user_portrait_service.py
+0
-1
No files found.
eda/smart_rank/dist_update_portrait_market.py
View file @
48180b6c
...
...
@@ -147,73 +147,73 @@ def compute_ai_scan(x):
def
get_user_tag_score
(
cl_id
,
all_word_tags
,
size
=
10
):
# try:
db_jerry_test
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
,
charset
=
'utf8'
)
cur_jerry_test
=
db_jerry_test
.
cursor
()
# 用户的非搜索行为
user_df_service_sql
=
"select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log "
\
"where cl_id ='{}' and action != 'do_search' "
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
user_df_service_sql
)
data
=
list
(
cur_jerry_test
.
fetchall
())
if
data
:
user_log_df
=
pd
.
DataFrame
(
data
)
user_log_df
.
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
]
else
:
user_log_df
=
pd
.
DataFrame
(
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
])
# 用户的搜索行为
user_df_search_sql
=
"select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log "
\
"where cl_id ='{}' and action = 'do_search'"
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
user_df_search_sql
)
data_search
=
list
(
cur_jerry_test
.
fetchall
())
if
data_search
:
user_df_search
=
pd
.
DataFrame
(
data_search
)
user_df_search
.
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
]
else
:
user_df_search
=
pd
.
DataFrame
(
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
])
# 搜索词转成tag
for
index
,
row
in
user_df_search
.
iterrows
():
if
row
[
'tag_referrer'
]
in
all_word_tags
:
for
search_tag
in
all_word_tags
[
row
[
'tag_referrer'
]]:
row
[
'tag_id'
]
=
int
(
search_tag
)
user_log_df
=
user_log_df
.
append
(
row
,
ignore_index
=
True
)
break
if
not
user_log_df
.
empty
:
user_log_df
[
"days_diff_now"
]
=
round
((
int
(
time
.
time
())
-
user_log_df
[
"time"
])
/
(
24
*
60
*
60
))
user_log_df
[
"score"
]
=
user_log_df
.
apply
(
lambda
x
:
compute_henqiang
(
x
.
days_diff_now
)
if
x
.
score_type
==
"henqiang"
else
(
compute_jiaoqiang
(
x
.
days_diff_now
)
if
x
.
score_type
==
"jiaoqiang"
else
(
compute_ai_scan
(
x
.
days_diff_now
)
if
x
.
score_type
==
"ai_scan"
else
(
compute_ruoyixiang
(
x
.
days_diff_now
)
if
x
.
score_type
==
"ruoyixiang"
else
compute_validate
(
x
.
days_diff_now
)))),
axis
=
1
)
finally_score
=
user_log_df
.
sort_values
(
by
=
[
"score"
,
"time"
],
ascending
=
False
)
finally_score
.
drop_duplicates
(
subset
=
"tag_id"
,
inplace
=
True
)
finally_score
[
"weight"
]
=
finally_score
[
'score'
]
/
finally_score
[
'score'
]
.
sum
()
finally_score
[
"pay_type"
]
=
finally_score
.
apply
(
lambda
x
:
3
if
x
.
action
==
"api/order/validate"
else
(
2
if
x
.
action
==
"api/settlement/alipay_callback"
else
1
),
axis
=
1
)
score_result
=
finally_score
[[
"tag_id"
,
"cl_id"
,
"score"
,
"weight"
,
"pay_type"
]]
score_result
.
rename
(
columns
=
{
"cl_id"
:
"device_id"
},
inplace
=
True
)
# 写tidb
delete_sql
=
"delete from api_market_personas where device_id='{}'"
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
delete_sql
)
db_jerry_test
.
commit
()
for
index
,
row
in
score_result
.
iterrows
():
insert_sql
=
"insert into api_market_personas values (null, {}, '{}', {}, {}, {})"
.
format
(
row
[
'tag_id'
],
row
[
'device_id'
],
row
[
'score'
],
row
[
'weight'
],
row
[
'pay_type'
])
cur_jerry_test
.
execute
(
insert_sql
)
try
:
db_jerry_test
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
,
charset
=
'utf8'
)
cur_jerry_test
=
db_jerry_test
.
cursor
()
# 用户的非搜索行为
user_df_service_sql
=
"select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log "
\
"where cl_id ='{}' and action != 'do_search' "
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
user_df_service_sql
)
data
=
list
(
cur_jerry_test
.
fetchall
())
if
data
:
user_log_df
=
pd
.
DataFrame
(
data
)
user_log_df
.
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
]
else
:
user_log_df
=
pd
.
DataFrame
(
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
])
# 用户的搜索行为
user_df_search_sql
=
"select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log "
\
"where cl_id ='{}' and action = 'do_search'"
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
user_df_search_sql
)
data_search
=
list
(
cur_jerry_test
.
fetchall
())
if
data_search
:
user_df_search
=
pd
.
DataFrame
(
data_search
)
user_df_search
.
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
]
else
:
user_df_search
=
pd
.
DataFrame
(
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
])
# 搜索词转成tag
for
index
,
row
in
user_df_search
.
iterrows
():
if
row
[
'tag_referrer'
]
in
all_word_tags
:
for
search_tag
in
all_word_tags
[
row
[
'tag_referrer'
]]:
row
[
'tag_id'
]
=
int
(
search_tag
)
user_log_df
=
user_log_df
.
append
(
row
,
ignore_index
=
True
)
break
if
not
user_log_df
.
empty
:
user_log_df
[
"days_diff_now"
]
=
round
((
int
(
time
.
time
())
-
user_log_df
[
"time"
])
/
(
24
*
60
*
60
))
user_log_df
[
"score"
]
=
user_log_df
.
apply
(
lambda
x
:
compute_henqiang
(
x
.
days_diff_now
)
if
x
.
score_type
==
"henqiang"
else
(
compute_jiaoqiang
(
x
.
days_diff_now
)
if
x
.
score_type
==
"jiaoqiang"
else
(
compute_ai_scan
(
x
.
days_diff_now
)
if
x
.
score_type
==
"ai_scan"
else
(
compute_ruoyixiang
(
x
.
days_diff_now
)
if
x
.
score_type
==
"ruoyixiang"
else
compute_validate
(
x
.
days_diff_now
)))),
axis
=
1
)
finally_score
=
user_log_df
.
sort_values
(
by
=
[
"score"
,
"time"
],
ascending
=
False
)
finally_score
.
drop_duplicates
(
subset
=
"tag_id"
,
inplace
=
True
)
finally_score
[
"weight"
]
=
finally_score
[
'score'
]
/
finally_score
[
'score'
]
.
sum
()
finally_score
[
"pay_type"
]
=
finally_score
.
apply
(
lambda
x
:
3
if
x
.
action
==
"api/order/validate"
else
(
2
if
x
.
action
==
"api/settlement/alipay_callback"
else
1
),
axis
=
1
)
score_result
=
finally_score
[[
"tag_id"
,
"cl_id"
,
"score"
,
"weight"
,
"pay_type"
]]
score_result
.
rename
(
columns
=
{
"cl_id"
:
"device_id"
},
inplace
=
True
)
# 写tidb
delete_sql
=
"delete from api_market_personas where device_id='{}'"
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
delete_sql
)
db_jerry_test
.
commit
()
db_jerry_test
.
close
()
return
"sucess"
else
:
return
"user log is empty"
# except Exception as e:
# return 'pass'
for
index
,
row
in
score_result
.
iterrows
():
insert_sql
=
"insert into api_market_personas values (null, {}, '{}', {}, {}, {})"
.
format
(
row
[
'tag_id'
],
row
[
'device_id'
],
row
[
'score'
],
row
[
'weight'
],
row
[
'pay_type'
])
cur_jerry_test
.
execute
(
insert_sql
)
db_jerry_test
.
commit
()
db_jerry_test
.
close
()
return
"sucess"
else
:
return
"user log is empty"
except
Exception
as
e
:
return
'pass'
if
__name__
==
'__main__'
:
...
...
eda/smart_rank/dist_update_user_portrait_service.py
View file @
48180b6c
...
...
@@ -226,7 +226,6 @@ def get_user_service_portrait(cl_id, all_word_tags, all_tag_tag_type, all_3tag_2
user_df_search
.
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
]
else
:
user_df_search
=
pd
.
DataFrame
(
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
])
db_jerry_test
.
close
()
# 搜索词转成tag
# user_df_search_2_tag = pd.DataFrame(columns=list(user_df_service.columns))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment