Commit 4f4d6408 authored by Your Name's avatar Your Name

test

parent ac40ecad
...@@ -141,7 +141,7 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False): ...@@ -141,7 +141,7 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
#print(batch_features,batch_labels) #print(batch_features,batch_labels)
return batch_features, batch_labels return batch_features, batch_labels
def esmm_predict(dist_data): def main(_):
dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d') dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
model_dir = "hdfs://172.16.32.4:8020/strategy/esmm/model_ckpt/DeepCvrMTL/" + dt_dir model_dir = "hdfs://172.16.32.4:8020/strategy/esmm/model_ckpt/DeepCvrMTL/" + dt_dir
te_files = ["hdfs://172.16.32.4:8020/strategy/esmm/nearby/part-r-00000"] te_files = ["hdfs://172.16.32.4:8020/strategy/esmm/nearby/part-r-00000"]
...@@ -157,13 +157,17 @@ def esmm_predict(dist_data): ...@@ -157,13 +157,17 @@ def esmm_predict(dist_data):
} }
config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':36}), config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':36}),
log_step_count_steps=100, save_summary_steps=100) log_step_count_steps=100, save_summary_steps=100)
Estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir="hdfs://172.16.32.4:8020/strategy/esmm/model_ckpt/DeepCvrMTL/", params=model_params, config=config) Estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config)
preds = Estimator.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=10000), predict_keys=["pctcvr","pctr","pcvr"])
# indices = []
# for prob in preds:
# indices.append([prob['pctr'], prob['pcvr'], prob['pctcvr']])
# return indices
with open("/home/gmuser/esmm/nearby/pred.txt", "w") as fo:
for prob in preds:
fo.write("%f\t%f\t%f\n" % (prob['pctr'], prob['pcvr'], prob['pctcvr']))
preds = Estimator.predict(input_fn=lambda: input_fn(dist_data, num_epochs=1, batch_size=10000), predict_keys=["pctcvr","pctr","pcvr"])
indices = []
for prob in preds:
indices.append([prob['pctr'], prob['pcvr'], prob['pctcvr']])
return indices
...@@ -184,5 +188,7 @@ if __name__ == "__main__": ...@@ -184,5 +188,7 @@ if __name__ == "__main__":
df.show() df.show()
b = time.time() b = time.time()
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
print("耗时(分钟):") print("耗时(分钟):")
print((time.time()-b)/60) print((time.time()-b)/60)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment