Commit 524808d0 authored by 张彦钊's avatar 张彦钊

change sql for test

parent 52960316
......@@ -204,16 +204,17 @@ def update_sql_dairy_queue(queue_name, diary_id):
def multi_update(key, name_dict,native_queue_list):
predict(key, name_dict[key])
score_df = save_result(key, name_dict[key])
score_df = merge_score(name_dict[key], score_df)
diary_id = update_dairy_queue(score_df)
if get_native_queue(device_id) == native_queue_list:
update_sql_dairy_queue(key, diary_id)
print("更新结束")
else:
print("不需要更新日记队列")
if name_dict[key] != []:
predict(key, name_dict[key])
score_df = save_result(key, name_dict[key])
score_df = merge_score(name_dict[key], score_df)
diary_id = update_dairy_queue(score_df)
if get_native_queue(device_id) == native_queue_list:
update_sql_dairy_queue(key, diary_id)
print("更新结束")
else:
print("不需要更新日记队列")
def user_update(device_id):
......@@ -227,27 +228,32 @@ def user_update(device_id):
pool.join()
if __name__ == "__main__":
while True:
empty,device_id_list = get_active_users()
if empty:
for eachFile in os.listdir("/tmp"):
if "xlearn" in eachFile:
os.remove("/tmp" + "/" + eachFile)
time.sleep(58)
else:
old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
# 求活跃用户和老用户的交集,也就是只预测老用户
predict_list = list(set(device_id_list) & set(old_device_id_list))
# 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
# predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
start = time.time()
warnings.filterwarnings("ignore")
data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
for device_id in predict_list:
user_update(device_id)
end = time.time()
print(end - start)
# while True:
empty,device_id_list = get_active_users()
if empty:
for eachFile in os.listdir("/tmp"):
if "xlearn" in eachFile:
os.remove("/tmp" + "/" + eachFile)
time.sleep(58)
else:
old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
# 求活跃用户和老用户的交集,也就是只预测老用户
predict_list = list(set(device_id_list) & set(old_device_id_list))
# 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
# predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
start = time.time()
warnings.filterwarnings("ignore")
data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
for device_id in predict_list:
user_update(device_id)
end = time.time()
print(end - start)
# # TODO 上线后把预测用户改成多进程预测
# data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment