Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
5ba17599
Commit
5ba17599
authored
Feb 20, 2020
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add
parent
a7a00784
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
29 additions
and
26 deletions
+29
-26
make_data.py
make_data.py
+29
-26
No files found.
make_data.py
View file @
5ba17599
...
...
@@ -129,7 +129,7 @@ def hospital():
"left join hippo_merchantrelevance b on api.id = b.doctor_id "
\
"left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id "
\
"where api.doctor_type = 1 and h.date = '{}' "
\
"and budan.stat_date = '{}'
limit 6;
"
.
format
(
date_str
,
date_tmp
)
"and budan.stat_date = '{}'
; limit 6
"
.
format
(
date_str
,
date_tmp
)
db
=
pymysql
.
connect
(
host
=
'172.16.30.143'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'BJQaT9VzDcuPBqkd'
,
db
=
'zhengxing'
)
cursor
=
db
.
cursor
()
...
...
@@ -144,45 +144,48 @@ def hospital():
print
(
df
.
head
(
6
))
# sql = "select merchant_id,doctor_ad_money_30_days,expand_rechange_amount_30," \
# "service_pv_30,expert_pv_30,organization_pv_30 from statistic_merchant_rank_factor " \
# "where partition_date = '{}';".format(date_str)
#
# cursor = db.cursor()
# cursor.execute(sql)
# result = cursor.fetchall()
# db.close()
# tmp = pd.DataFrame(list(result))
# name = ["merchant_id", "doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30"]
# tmp = tmp.rename(columns=dict(zip(list(range(len(name))), name)))
#
sql
=
"select merchant_id,doctor_ad_money_30_days,"
\
"service_pv_30,expert_pv_30,organization_pv_30,doctor_discount_30_days from statistic_merchant_rank_factor "
\
"where partition_date = '{}' limit 6;"
.
format
(
date_str
)
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
db
.
close
()
tmp
=
pd
.
DataFrame
(
list
(
result
))
name
=
[
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"doctor_discount_30_days"
]
tmp
=
tmp
.
rename
(
columns
=
dict
(
zip
(
list
(
range
(
len
(
name
))),
name
)))
print
(
tmp
.
head
(
6
))
# df["merchant_id"] = df["merchant_id"].astype("str")
# tmp["merchant_id"] = tmp["merchant_id"].astype("str")
# df = pd.merge(df, tmp, on='merchant_id')
#
# for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
# "doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30", "budan_payment_30_days"]:
# for i in ["hospital_exposure_pv_30","service_exposure_pv_30","expert_exposure_pv_30",
# "service_ctr_30","hospital_ctr_30","expert_ctr_30",
# "doctor_ad_money_30_days", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30", "budan_payment_30_days","doctor_discount_30_days"]:
# df[i] = df[i].astype("float")
#
# df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
# df = df[~df["expert_exposure_pv_30"].isin([0.0])]
# df["all_exposure"] = df["hospital_exposure_pv_30"] + df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
# df = df[~df["all_exposure"].isin([0.0])]
# df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
# df = df[~df["tmp"].isin([0.0])]
# print("aaaaaaaa")
# df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
# df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"])
# df["hospital_exposure_pv_30"]/ df["all_exposure"] * df["hospital_ctr_30"] + \
# df["expert_exposure_pv_30"]/df["all_exposure"] * df["expert_ctr_30"]
# df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
# df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
# df["score"] = df["ctr"]**0.5 * (df["commission"] + df["pv_ad"])
# columns = ["score","ctr","commission","pv_ad","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
# "merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
# "mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
# df["cpt"] = df["doctor_discount_30_days"]/df["tmp"]
# df["score"] = df["ctr"]**0.5 * (df["commission"] + df["cpt"])
# columns = ["score","ctr","commission","cpt","hospital_exposure_pv_30","service_exposure_pv_30",
# "expert_exposure_pv_30",
# "service_ctr_30","hospital_ctr_30","expert_ctr_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30"]
# data = df.loc[:, columns]
# print(data.head(6))
# data.to_csv('/home/gmuser/
doctor
.csv',index=False)
# data.to_csv('/home/gmuser/
hospital
.csv',index=False)
if
__name__
==
"__main__"
:
hospital
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment