Commit 5dc2f162 authored by 高雅喆's avatar 高雅喆

add dist update user portrait

parent 609cedf2
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pymysql
import smtplib
from email.mime.text import MIMEText
from email.utils import formataddr
from email.mime.multipart import MIMEMultipart
from email.mime.application import MIMEApplication
import redis
import datetime
from pyspark import SparkConf
import time
from pyspark.sql import SparkSession
import json
import numpy as np
import pandas as pd
def compute_henqiang(x):
score = 15-x*((15-0.5)/180)
if score>0.5:
return score
else:
return 0.5
def compute_jiaoqiang(x):
score = 12-x*(12/180)
if score>0.5:
return score
else:
return 0.5
def compute_ruoyixiang(x):
score = 5-x*((5-0.5)/180)
if score>0.5:
return score
else:
return 0.5
def compute_validate(x):
score = 10-x*((10-0.5)/180)
if score>0.5:
return score
else:
return 0.5
def tag_list2dict(lst,size):
result = []
if lst:
for i in lst:
tmp = dict()
tmp["content"] = i["tag_id"]
if isinstance(i['tag_id'], int):
tmp["type"] = "tag"
else:
tmp["type"] = "search_word"
tmp["score"] = i["tag_score"]
result.append(tmp)
return result[:size]
def get_user_tag_score(cl_id, all_log_df):
user_log_df = all_log_df.loc(all_log_df['cl_id'] == cl_id)
if not user_log_df.empty:
user_log_df["tag_id"] = np.where(user_log_df["action"] == "do_search",user_log_df["tag_referrer"],user_log_df["tag_id"])
user_log_df["days_diff_now"] = round((int(time.time())-user_log_df["time"]) / (24*60*60))
user_log_df["tag_score"] = user_log_df.apply(
lambda x: compute_henqiang(x.days_diff_now) if x.score_type == "henqiang" else (
compute_jiaoqiang(x.days_diff_now) if x.score_type == "jiaoqiang" else (
compute_ruoyixiang(x.days_diff_now) if x.score_type == "ruoyixiang" else compute_validate(x.days_diff_now))), axis=1)
finally_score = user_log_df.sort_values(by=["tag_score","time"],ascending=False)
finally_score.drop_duplicates(subset="tag_id", inplace=True)
finally_score_lst = finally_score[["tag_id","tag_score"]].to_dict('record')
tag_id_list = tag_list2dict(finally_score_lst,size)
return cl_id, tag_id_list
else:
return ()
def send_email(app,id,e):
# 第三方 SMTP 服务
mail_host = 'smtp.exmail.qq.com' # 设置服务器
mail_user = "gaoyazhe@igengmei.com" # 用户名
mail_pass = "VCrKTui99a7ALhiK" # 口令
sender = 'gaoyazhe@igengmei.com'
receivers = ['gaoyazhe@igengmei.com'] # 接收邮件,可设置为你的QQ邮箱或者其他邮箱
e = str(e)
msg = MIMEMultipart()
part = MIMEText('app_id:'+id+':fail', 'plain', 'utf-8')
msg.attach(part)
msg['From'] = formataddr(["gaoyazhe", sender])
# 括号里的对应收件人邮箱昵称、收件人邮箱账号
msg['To'] = ";".join(receivers)
# message['Cc'] = ";".join(cc_reciver)
msg['Subject'] = 'spark streaming:app_name:'+app
with open('error.txt','w') as f:
f.write(e)
f.close()
part = MIMEApplication(open('error.txt', 'r').read())
part.add_header('Content-Disposition', 'attachment', filename="error.txt")
msg.attach(part)
try:
smtpObj = smtplib.SMTP_SSL(mail_host, 465)
smtpObj.login(mail_user, mail_pass)
smtpObj.sendmail(sender, receivers, msg.as_string())
except smtplib.SMTPException:
print('error')
if __name__ == '__main__':
try:
db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC',
db='jerry_test', charset='utf8')
cur_jerry_test = db_jerry_test.cursor()
# 获取所有用户的设备id
sql_device_ids = "select distinct cl_id from user_new_tag_log"
cur_jerry_test.execute(sql_device_ids)
device_ids_lst = [i[0] for i in cur_jerry_test.fetchall()]
# 获取所有用户的行为日志
sql_all_log = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log"
cur_jerry_test.execute(sql_all_log)
all_log = cur_jerry_test.fetchall()
db_jerry_test.close()
all_log_df = pd.DataFrame(list(all_log))
all_log_df.columns = ["time", "cl_id", "score_type","tag_id","tag_referrer","action"]
# rdd
sparkConf = SparkConf().set("spark.hive.mapred.supports.subdirectories", "true") \
.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true") \
.set("spark.tispark.plan.allow_index_double_read", "false") \
.set("spark.tispark.plan.allow_index_read", "true") \
.set("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") \
.set("spark.tispark.pd.addresses", "172.16.40.158:2379").set("spark.io.compression.codec", "lzf") \
.set("spark.driver.maxResultSize", "8g").set("spark.sql.avro.compression.codec", "snappy")
spark = SparkSession.builder.config(conf=sparkConf).enableHiveSupport().getOrCreate()
spark.sparkContext.setLogLevel("WARN")
device_ids_lst_rdd = spark.sparkContext.parallelize(device_ids_lst)
gm_kv_cli = redis.Redis(host="172.16.40.135", port=5379, db=6, socket_timeout=2000)
result = device_ids_lst_rdd.repartition(40).map(lambda x: get_user_tag_score(x, all_log_df))
result.take(10).foreach(print)
except Exception as e:
print(e)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment