Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
5e3c6a1e
Commit
5e3c6a1e
authored
Oct 28, 2019
by
高雅喆
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
画像时间衰减上线
parent
f0dcca73
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
13 additions
and
13 deletions
+13
-13
dist_update_user_portrait_service.py
eda/smart_rank/dist_update_user_portrait_service.py
+5
-5
evaluation_metrics.py
eda/smart_rank/evaluation_metrics.py
+2
-2
tool.py
eda/smart_rank/tool.py
+6
-6
No files found.
eda/smart_rank/dist_update_user_portrait_service.py
View file @
5e3c6a1e
...
@@ -94,11 +94,11 @@ def get_user_service_portrait(cl_id, all_word_tags, all_tag_tag_type, all_3tag_2
...
@@ -94,11 +94,11 @@ def get_user_service_portrait(cl_id, all_word_tags, all_tag_tag_type, all_3tag_2
user_df_service
[
"tag2_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag2"
]),
axis
=
1
)
user_df_service
[
"tag2_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag2"
]),
axis
=
1
)
# 算分及比例
# 算分及比例
user_df_service
[
"tag_score"
]
=
user_df_service
.
apply
(
user_df_service
[
"tag_score"
]
=
user_df_service
.
apply
(
lambda
x
:
compute_henqiang
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"henqiang"
else
(
lambda
x
:
compute_henqiang
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"henqiang"
else
(
compute_jiaoqiang
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"jiaoqiang"
else
(
compute_jiaoqiang
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"jiaoqiang"
else
(
compute_ai_scan
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ai_scan"
else
(
compute_ai_scan
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ai_scan"
else
(
compute_ruoyixiang
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ruoyixiang"
else
compute_ruoyixiang
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ruoyixiang"
else
compute_validate
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)))),
axis
=
1
)
compute_validate
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)))),
axis
=
1
)
tag_score_sum
=
user_df_service
.
groupby
(
by
=
[
"tag2"
,
"tag2_type"
])
.
agg
(
tag_score_sum
=
user_df_service
.
groupby
(
by
=
[
"tag2"
,
"tag2_type"
])
.
agg
(
{
'tag_score'
:
'sum'
,
'cl_id'
:
'first'
,
'action'
:
'first'
})
.
reset_index
()
.
sort_values
(
by
=
[
"tag_score"
],
{
'tag_score'
:
'sum'
,
'cl_id'
:
'first'
,
'action'
:
'first'
})
.
reset_index
()
.
sort_values
(
by
=
[
"tag_score"
],
ascending
=
False
)
ascending
=
False
)
...
...
eda/smart_rank/evaluation_metrics.py
View file @
5e3c6a1e
...
@@ -32,7 +32,7 @@ def setup_logger(logger_name, log_file, level=logging.INFO):
...
@@ -32,7 +32,7 @@ def setup_logger(logger_name, log_file, level=logging.INFO):
def
get_user_service_portrait_not_alipay
(
cl_id
,
all_word_tags
,
all_tag_tag_type
,
pay_time
,
all_3tag_2tag
,
version
=
1
,
def
get_user_service_portrait_not_alipay
(
cl_id
,
all_word_tags
,
all_tag_tag_type
,
pay_time
,
all_3tag_2tag
,
version
=
1
,
exponential
=
0
,
normalization_size
=
7
,
decay_days
=
18
0
,
size
=
10
):
exponential
=
0
,
normalization_size
=
7
,
decay_days
=
3
0
,
size
=
10
):
"""
"""
:param cl_id:
:param cl_id:
:param all_word_tags:
:param all_word_tags:
...
@@ -305,7 +305,7 @@ if __name__ == '__main__':
...
@@ -305,7 +305,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
"-e"
,
"--exponential"
,
type
=
int
,
dest
=
"exponential"
,
default
=
0
,
help
=
"是否采用指数衰减"
)
parser
.
add_argument
(
"-e"
,
"--exponential"
,
type
=
int
,
dest
=
"exponential"
,
default
=
0
,
help
=
"是否采用指数衰减"
)
parser
.
add_argument
(
"-n"
,
"--normalization_size"
,
type
=
int
,
dest
=
"normalization_size"
,
default
=
7
,
parser
.
add_argument
(
"-n"
,
"--normalization_size"
,
type
=
int
,
dest
=
"normalization_size"
,
default
=
7
,
help
=
"天数差归一化的区间"
)
help
=
"天数差归一化的区间"
)
parser
.
add_argument
(
"-d"
,
"--decay_days"
,
type
=
int
,
dest
=
"decay_days"
,
default
=
18
0
,
help
=
"分数衰减的天数"
)
parser
.
add_argument
(
"-d"
,
"--decay_days"
,
type
=
int
,
dest
=
"decay_days"
,
default
=
3
0
,
help
=
"分数衰减的天数"
)
parser
.
add_argument
(
"-a"
,
"--action_type"
,
dest
=
"action_type"
,
nargs
=
'+'
,
help
=
"计算匹配度的行为"
)
parser
.
add_argument
(
"-a"
,
"--action_type"
,
dest
=
"action_type"
,
nargs
=
'+'
,
help
=
"计算匹配度的行为"
)
parser
.
add_argument
(
"-s"
,
"--save_tidb"
,
type
=
int
,
dest
=
"save_tidb"
,
default
=
1
,
help
=
"统计结果是否存tidb"
)
parser
.
add_argument
(
"-s"
,
"--save_tidb"
,
type
=
int
,
dest
=
"save_tidb"
,
default
=
1
,
help
=
"统计结果是否存tidb"
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
...
...
eda/smart_rank/tool.py
View file @
5e3c6a1e
...
@@ -187,7 +187,7 @@ def get_tag2_from_tag3(tag3, all_3tag_2tag, user_log_df_tag2_list):
...
@@ -187,7 +187,7 @@ def get_tag2_from_tag3(tag3, all_3tag_2tag, user_log_df_tag2_list):
print
(
e
)
print
(
e
)
def
compute_henqiang
(
x
,
decay_days
=
18
0
,
normalization_size
=
7
,
exponential
=
0
):
def
compute_henqiang
(
x
,
decay_days
=
3
0
,
normalization_size
=
7
,
exponential
=
0
):
if
exponential
:
if
exponential
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
15
-
2
**
alpha
*
((
15
-
0.5
)
/
decay_days
)
score
=
15
-
2
**
alpha
*
((
15
-
0.5
)
/
decay_days
)
...
@@ -197,7 +197,7 @@ def compute_henqiang(x, decay_days=180, normalization_size=7, exponential=0):
...
@@ -197,7 +197,7 @@ def compute_henqiang(x, decay_days=180, normalization_size=7, exponential=0):
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_jiaoqiang
(
x
,
decay_days
=
18
0
,
normalization_size
=
7
,
exponential
=
0
):
def
compute_jiaoqiang
(
x
,
decay_days
=
3
0
,
normalization_size
=
7
,
exponential
=
0
):
if
exponential
:
if
exponential
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
12
-
2
**
alpha
*
((
12
-
0.5
)
/
decay_days
)
score
=
12
-
2
**
alpha
*
((
12
-
0.5
)
/
decay_days
)
...
@@ -207,7 +207,7 @@ def compute_jiaoqiang(x, decay_days=180, normalization_size=7, exponential=0):
...
@@ -207,7 +207,7 @@ def compute_jiaoqiang(x, decay_days=180, normalization_size=7, exponential=0):
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_ruoyixiang
(
x
,
decay_days
=
18
0
,
normalization_size
=
7
,
exponential
=
0
):
def
compute_ruoyixiang
(
x
,
decay_days
=
3
0
,
normalization_size
=
7
,
exponential
=
0
):
if
exponential
:
if
exponential
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
5
-
2
**
alpha
*
((
5
-
0.5
)
/
decay_days
)
score
=
5
-
2
**
alpha
*
((
5
-
0.5
)
/
decay_days
)
...
@@ -217,7 +217,7 @@ def compute_ruoyixiang(x, decay_days=180, normalization_size=7, exponential=0):
...
@@ -217,7 +217,7 @@ def compute_ruoyixiang(x, decay_days=180, normalization_size=7, exponential=0):
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_validate
(
x
,
decay_days
=
18
0
,
normalization_size
=
7
,
exponential
=
0
):
def
compute_validate
(
x
,
decay_days
=
3
0
,
normalization_size
=
7
,
exponential
=
0
):
if
exponential
:
if
exponential
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
10
-
2
**
alpha
*
((
10
-
0.5
)
/
decay_days
)
score
=
10
-
2
**
alpha
*
((
10
-
0.5
)
/
decay_days
)
...
@@ -227,7 +227,7 @@ def compute_validate(x, decay_days=180, normalization_size=7, exponential=0):
...
@@ -227,7 +227,7 @@ def compute_validate(x, decay_days=180, normalization_size=7, exponential=0):
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_ai_scan
(
x
,
decay_days
=
18
0
,
normalization_size
=
7
,
exponential
=
0
):
def
compute_ai_scan
(
x
,
decay_days
=
3
0
,
normalization_size
=
7
,
exponential
=
0
):
if
exponential
:
if
exponential
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
2
-
2
**
alpha
*
((
2
-
0.5
)
/
decay_days
)
score
=
2
-
2
**
alpha
*
((
2
-
0.5
)
/
decay_days
)
...
@@ -247,7 +247,7 @@ def get_action_tag_count(df, action_time):
...
@@ -247,7 +247,7 @@ def get_action_tag_count(df, action_time):
print
(
e
)
print
(
e
)
def
exponential_decay
(
days_diff
,
decay_days
=
18
0
,
normalization_size
=
7
):
def
exponential_decay
(
days_diff
,
decay_days
=
3
0
,
normalization_size
=
7
):
x
=
np
.
arange
(
1
,
decay_days
+
1
,
1
)
x
=
np
.
arange
(
1
,
decay_days
+
1
,
1
)
# 天数差归一化到[0, normalization_size]
# 天数差归一化到[0, normalization_size]
a
=
(
normalization_size
-
0
)
*
(
days_diff
-
min
(
x
))
/
(
max
(
x
)
-
min
(
x
))
a
=
(
normalization_size
-
0
)
*
(
days_diff
-
min
(
x
))
/
(
max
(
x
)
-
min
(
x
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment