Commit 66592d26 authored by 张彦钊's avatar 张彦钊

add

parent 8d505536
......@@ -75,12 +75,11 @@ def v1_doctor():
"merchant_id","budan_payment_30_days"]
df = df.rename(columns=dict(zip(list(range(len(name))), name)))
print(df.head(6))
sql = "select merchant_id,doctor_ad_money_30_days,expand_rechange_amount_30," \
"service_pv_30,expert_pv_30,organization_pv_30 from statistic_merchant_rank_factor " \
"where partition_date = '{}';".format(date_str)
print(sql)
cursor = db.cursor()
cursor.execute(sql)
result = cursor.fetchall()
......@@ -89,35 +88,33 @@ def v1_doctor():
name = ["merchant_id", "doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
"mexpert_pv_30", "organization_pv_30"]
tmp = tmp.rename(columns=dict(zip(list(range(len(name))), name)))
print(tmp.head(6))
df["merchant_id"] = df["merchant_id"].astype("str")
tmp["merchant_id"] = tmp["merchant_id"].astype("str")
df = pd.merge(df, tmp, on='merchant_id')
print(df.head(6))
# for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
# "doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30", "budan_payment_30_days"]:
# df[i] = df[i].astype("float")
#
# df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
# df = df[~df["expert_exposure_pv_30"].isin([0.0])]
# df = df[~df["all_exposure"].isin([0.0])]
# df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
# df = df[~df["tmp"].isin([0.0])]
#
# df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
# df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"])
# df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
# df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
# df["score"] = df["ctr"]**0.5 * (df["commission"] + df["pv_ad"])
# columns = ["score","ctr","commission","pv_ad","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
# "merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
# "mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
# data = df.loc[:, columns]
# # print(data)
# data.to_csv('/home/gmuser/doctor.csv',index=False)
for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
"doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
"mexpert_pv_30", "organization_pv_30", "budan_payment_30_days"]:
df[i] = df[i].astype("float")
df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
df = df[~df["expert_exposure_pv_30"].isin([0.0])]
df = df[~df["all_exposure"].isin([0.0])]
df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
df = df[~df["tmp"].isin([0.0])]
print("aaaaaaaa")
df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"])
df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
df["score"] = df["ctr"]**0.5 * (df["commission"] + df["pv_ad"])
columns = ["score","ctr","commission","pv_ad","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
"merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
"mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
data = df.loc[:, columns]
print(data.head(6))
data.to_csv('/home/gmuser/doctor.csv',index=False)
def hospital():
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment