Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
66592d26
Commit
66592d26
authored
Feb 19, 2020
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add
parent
8d505536
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
24 additions
and
27 deletions
+24
-27
make_data.py
make_data.py
+24
-27
No files found.
make_data.py
View file @
66592d26
...
...
@@ -75,12 +75,11 @@ def v1_doctor():
"merchant_id"
,
"budan_payment_30_days"
]
df
=
df
.
rename
(
columns
=
dict
(
zip
(
list
(
range
(
len
(
name
))),
name
)))
print
(
df
.
head
(
6
))
sql
=
"select merchant_id,doctor_ad_money_30_days,expand_rechange_amount_30,"
\
"service_pv_30,expert_pv_30,organization_pv_30 from statistic_merchant_rank_factor "
\
"where partition_date = '{}';"
.
format
(
date_str
)
print
(
sql
)
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
...
...
@@ -89,35 +88,33 @@ def v1_doctor():
name
=
[
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
]
tmp
=
tmp
.
rename
(
columns
=
dict
(
zip
(
list
(
range
(
len
(
name
))),
name
)))
print
(
tmp
.
head
(
6
))
df
[
"merchant_id"
]
=
df
[
"merchant_id"
]
.
astype
(
"str"
)
tmp
[
"merchant_id"
]
=
tmp
[
"merchant_id"
]
.
astype
(
"str"
)
df
=
pd
.
merge
(
df
,
tmp
,
on
=
'merchant_id'
)
print
(
df
.
head
(
6
))
# for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
# "doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30", "budan_payment_30_days"]:
# df[i] = df[i].astype("float")
#
# df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
# df = df[~df["expert_exposure_pv_30"].isin([0.0])]
# df = df[~df["all_exposure"].isin([0.0])]
# df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
# df = df[~df["tmp"].isin([0.0])]
#
# df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
# df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"])
# df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
# df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
# df["score"] = df["ctr"]**0.5 * (df["commission"] + df["pv_ad"])
# columns = ["score","ctr","commission","pv_ad","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
# "merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
# "mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
# data = df.loc[:, columns]
# # print(data)
# data.to_csv('/home/gmuser/doctor.csv',index=False)
for
i
in
[
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]:
df
[
i
]
=
df
[
i
]
.
astype
(
"float"
)
df
[
"all_exposure"
]
=
df
[
"service_exposure_pv_30"
]
+
df
[
"expert_exposure_pv_30"
]
df
=
df
[
~
df
[
"expert_exposure_pv_30"
]
.
isin
([
0.0
])]
df
=
df
[
~
df
[
"all_exposure"
]
.
isin
([
0.0
])]
df
[
"tmp"
]
=
df
[
"service_pv_30"
]
+
df
[
"mexpert_pv_30"
]
+
df
[
"organization_pv_30"
]
df
=
df
[
~
df
[
"tmp"
]
.
isin
([
0.0
])]
print
(
"aaaaaaaa"
)
df
[
"ctr"
]
=
df
[
"service_exposure_pv_30"
]
/
df
[
"all_exposure"
]
*
df
[
"service_ctr_30"
]
+
\
df
[
"expert_exposure_pv_30"
]
/
df
[
"all_exposure"
]
*
(
df
[
"expert_pv_30"
]
/
df
[
"expert_exposure_pv_30"
])
df
[
"commission"
]
=
(
df
[
"doctor_ad_money_30_days"
]
+
df
[
"budan_payment_30_days"
])
/
df
[
"tmp"
]
df
[
"pv_ad"
]
=
df
[
"expand_rechange_amount_30"
]
/
df
[
"tmp"
]
df
[
"score"
]
=
df
[
"ctr"
]
**
0.5
*
(
df
[
"commission"
]
+
df
[
"pv_ad"
])
columns
=
[
"score"
,
"ctr"
,
"commission"
,
"pv_ad"
,
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]
data
=
df
.
loc
[:,
columns
]
print
(
data
.
head
(
6
))
data
.
to_csv
(
'/home/gmuser/doctor.csv'
,
index
=
False
)
def
hospital
():
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment