Commit 6795dd41 authored by 高雅喆's avatar 高雅喆

update

parent 65ab6c25
...@@ -235,50 +235,50 @@ def get_tag2_from_tag3(tag3, all_3tag_2tag, user_log_df_tag2_list): ...@@ -235,50 +235,50 @@ def get_tag2_from_tag3(tag3, all_3tag_2tag, user_log_df_tag2_list):
print(e) print(e)
def compute_henqiang(x, decay_days=30, normalization_size=7, exponential=0): def compute_henqiang(x, decay_days=30, exponential=0):
if exponential: if exponential:
alpha = exponential_decay(x, decay_days, normalization_size) alpha = exponential_decay(x, decay_days)
score = 15 - 2**alpha * ((15-0.5)/decay_days) score = 15 - 1.1**alpha * ((15-0.5)/decay_days)
else: else:
score = 15 - x * ((15-0.5)/decay_days) score = 15 - x * ((15-0.5)/decay_days)
if score > 0.5: if score > 0.5:
return score return score
else: else:
return 0.5 return 0.5
def compute_jiaoqiang(x, decay_days=30, normalization_size=7, exponential=0): def compute_jiaoqiang(x, decay_days=30, exponential=0):
if exponential: if exponential:
alpha = exponential_decay(x, decay_days, normalization_size) alpha = exponential_decay(x, decay_days)
score = 12 - 2**alpha * ((12-0.5)/decay_days) score = 12 - 1.1**alpha * ((12-0.5)/decay_days)
else: else:
score = 12 - x * ((12-0.5)/decay_days) score = 12 - x * ((12-0.5)/decay_days)
if score > 0.5: if score > 0.5:
return score return score
else: else:
return 0.5 return 0.5
def compute_ruoyixiang(x, decay_days=30, normalization_size=7, exponential=0): def compute_ruoyixiang(x, decay_days=30, exponential=0):
if exponential: if exponential:
alpha = exponential_decay(x, decay_days, normalization_size) alpha = exponential_decay(x, decay_days)
score = 5 - 2**alpha * ((5-0.5)/decay_days) score = 5 - 1.1**alpha * ((5-0.5)/decay_days)
else: else:
score = 5 - x * ((5-0.5)/decay_days) score = 5 - x * ((5-0.5)/decay_days)
if score > 0.5: if score > 0.5:
return score return score
else: else:
return 0.5 return 0.5
def compute_validate(x, decay_days=30, normalization_size=7, exponential=0): def compute_validate(x, decay_days=30, exponential=0):
if exponential: if exponential:
alpha = exponential_decay(x, decay_days, normalization_size) alpha = exponential_decay(x, decay_days)
score = 10 - 2**alpha * ((10-0.5)/decay_days) score = 10 - 1.1**alpha * ((10-0.5)/decay_days)
else: else:
score = 10 - x * ((10-0.5)/decay_days) score = 10 - x * ((10-0.5)/decay_days)
if score > 0.5: if score > 0.5:
return score return score
else: else:
return 0.5 return 0.5
def compute_ai_scan(x, decay_days=30, normalization_size=7, exponential=0): def compute_ai_scan(x, decay_days=30, exponential=0):
if exponential: if exponential:
alpha = exponential_decay(x, decay_days, normalization_size) alpha = exponential_decay(x, decay_days)
score = 2 - 2**alpha * ((2-0.5)/decay_days) score = 2 - 1.1**alpha * ((2-0.5)/decay_days)
else: else:
score = 2 - x * ((2-0.5)/decay_days) score = 2 - x * ((2-0.5)/decay_days)
if score > 0.5: if score > 0.5:
...@@ -295,10 +295,10 @@ def get_action_tag_count(df, action_time): ...@@ -295,10 +295,10 @@ def get_action_tag_count(df, action_time):
print(e) print(e)
def exponential_decay(days_diff, decay_days=30, normalization_size=7): def exponential_decay(days_diff, decay_days=30):
x = np.arange(1, decay_days+1, 1) # 天数差归一化到[0, decay_days]
# 天数差归一化到[0, normalization_size] x = np.arange(1, 180+1, 1)
a = (normalization_size - 0) * (days_diff - min(x)) / (max(x) - min(x)) a = (decay_days - 0) * (days_diff - min(x)) / (max(x) - min(x))
return a return a
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment