Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
6ef594e9
Commit
6ef594e9
authored
Jun 24, 2019
by
Your Name
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
test local predict with sample id
parent
e93b3862
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
11 deletions
+25
-11
train.py
eda/esmm/Model_pipline/train.py
+25
-11
No files found.
eda/esmm/Model_pipline/train.py
View file @
6ef594e9
...
...
@@ -15,6 +15,7 @@ import subprocess
import
time
import
glob
import
random
import
pandas
as
pd
#################### CMD Arguments ####################
FLAGS
=
tf
.
app
.
flags
.
FLAGS
...
...
@@ -65,7 +66,10 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
"tag5_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag6_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag7_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"number"
:
tf
.
VarLenFeature
(
tf
.
int64
)
"number"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"uid"
:
tf
.
VarLenFeature
(
tf
.
string
),
"city"
:
tf
.
VarLenFeature
(
tf
.
string
),
"cid_id"
:
tf
.
VarLenFeature
(
tf
.
string
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
y
=
parsed
.
pop
(
'y'
)
...
...
@@ -133,6 +137,9 @@ def model_fn(features, labels, mode, params):
tag6_list
=
features
[
'tag6_list'
]
tag7_list
=
features
[
'tag7_list'
]
number
=
features
[
'number'
]
uid
=
features
[
'uid'
]
city
=
features
[
'city'
]
cid_id
=
features
[
'cid_id'
]
if
FLAGS
.
task_type
!=
"infer"
:
y
=
labels
[
'y'
]
...
...
@@ -157,6 +164,9 @@ def model_fn(features, labels, mode, params):
tag2
,
tag3
,
tag4
,
tag5
,
tag6
,
tag7
],
axis
=
1
)
sample_id
=
tf
.
sparse
.
to_dense
(
number
)
uid
=
tf
.
sparse
.
to_dense
(
uid
,
default_value
=
""
)
city
=
tf
.
sparse
.
to_dense
(
city
,
default_value
=
""
)
cid_id
=
tf
.
sparse
.
to_dense
(
cid_id
,
default_value
=
""
)
with
tf
.
name_scope
(
"CVR_Task"
):
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
...
...
@@ -203,7 +213,7 @@ def model_fn(features, labels, mode, params):
pctcvr
=
pctr
*
pcvr
predictions
=
{
"pc
vr"
:
pcvr
,
"pctr"
:
pctr
,
"pctcvr"
:
pctcvr
,
"sample_id"
:
sample
_id
}
predictions
=
{
"pc
tcvr"
:
pctcvr
,
"sample_id"
:
sample_id
,
"uid"
:
uid
,
"city"
:
city
,
"cid_id"
:
cid
_id
}
export_outputs
=
{
tf
.
saved_model
.
signature_constants
.
DEFAULT_SERVING_SIGNATURE_DEF_KEY
:
tf
.
estimator
.
export
.
PredictOutput
(
predictions
)}
# Provide an estimator spec for `ModeKeys.PREDICT`
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
...
...
@@ -224,11 +234,11 @@ def model_fn(features, labels, mode, params):
# Provide an estimator spec for `ModeKeys.EVAL`
eval_metric_ops
=
{
"CTR_AUC"
:
tf
.
metrics
.
auc
(
y
,
pctr
),
#
"CTR_AUC": tf.metrics.auc(y, pctr),
#"CTR_F1": tf.contrib.metrics.f1_score(y,pctr),
#"CTR_Precision": tf.metrics.precision(y,pctr),
#"CTR_Recall": tf.metrics.recall(y,pctr),
"CVR_AUC"
:
tf
.
metrics
.
auc
(
z
,
pcvr
),
#
"CVR_AUC": tf.metrics.auc(z, pcvr),
"CTCVR_AUC"
:
tf
.
metrics
.
auc
(
z
,
pctcvr
)
}
if
mode
==
tf
.
estimator
.
ModeKeys
.
EVAL
:
...
...
@@ -311,7 +321,7 @@ def set_dist_env():
print
(
json
.
dumps
(
tf_config
))
os
.
environ
[
'TF_CONFIG'
]
=
json
.
dumps
(
tf_config
)
def
main
(
_
):
def
main
(
te_files
):
#------check Arguments------
if
FLAGS
.
dt_dir
==
""
:
FLAGS
.
dt_dir
=
(
date
.
today
()
+
timedelta
(
-
1
))
.
strftime
(
'
%
Y
%
m
%
d'
)
...
...
@@ -321,7 +331,6 @@ def main(_):
tr_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/test_tr/part-r-00000"
]
va_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/va/part-r-00000"
]
# te_files = ["%s/part-r-00000" % FLAGS.hdfs_dir]
te_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/test_nearby/part-r-00000"
]
if
FLAGS
.
clear_existing_model
:
try
:
...
...
@@ -360,10 +369,11 @@ def main(_):
for
key
,
value
in
sorted
(
result
.
items
()):
print
(
'
%
s:
%
s'
%
(
key
,
value
))
elif
FLAGS
.
task_type
==
'infer'
:
preds
=
Estimator
.
predict
(
input_fn
=
lambda
:
input_fn
(
te_files
,
num_epochs
=
1
,
batch_size
=
FLAGS
.
batch_size
),
predict_keys
=
[
"pctcvr"
,
"pctr"
,
"pcvr"
,
"sample_id"
])
with
open
(
FLAGS
.
local_dir
+
"/pred.txt"
,
"w"
)
as
fo
:
for
prob
in
preds
:
fo
.
write
(
"
%
f
\t
%
f
\t
%
f
\t
%
s
\n
"
%
(
prob
[
'pctr'
],
prob
[
'pcvr'
],
prob
[
'pctcvr'
],
prob
[
"sample_id"
][
0
]))
preds
=
Estimator
.
predict
(
input_fn
=
lambda
:
input_fn
(
te_files
,
num_epochs
=
1
,
batch_size
=
FLAGS
.
batch_size
),
predict_keys
=
[
"pctcvr"
,
"sample_id"
,
"uid"
,
"city"
,
"cid_id"
])
result
=
[]
for
prob
in
preds
:
result
.
append
([
str
(
prob
[
"sample_id"
][
0
]),
str
(
prob
[
"uid"
][
0
]),
str
(
prob
[
"city"
][
0
]),
str
(
prob
[
"cid_id"
][
0
]),
str
(
prob
[
'pctcvr'
])])
return
result
elif
FLAGS
.
task_type
==
'export'
:
print
(
"Not Implemented, Do It Yourself!"
)
...
...
@@ -373,8 +383,11 @@ if __name__ == "__main__":
b
=
time
.
time
()
path
=
"hdfs://172.16.32.4:8020/strategy/esmm/"
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
te_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/test_nearby/part-r-00000"
]
print
(
"hello up"
)
tf
.
app
.
run
()
result
=
main
(
te_files
)
df
=
pd
.
DataFrame
(
result
,
columns
=
[
"sample_id"
,
"uid"
,
"city"
,
"cid_id"
,
"pctcvr"
])
df
.
head
(
10
)
print
(
"hello down"
)
print
(
"耗时(分钟):"
)
print
((
time
.
time
()
-
b
)
/
60
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment