Commit 78d37e75 authored by 张彦钊's avatar 张彦钊

add print

parent 9202dafb
......@@ -4,6 +4,8 @@ import pandas as pd
from sklearn.utils import shuffle
import numpy as np
import xlearn as xl
# 从数据库的表里获取数据,并转化成df格式
def con_sql(sql):
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
......@@ -48,13 +50,13 @@ data = click.append(exposure)
print("done 合并点击表和曝光表")
print(data.head(2))
# 从time特征中抽取hour、weekday
data["hour"] = data["time"].apply(lambda x:datetime.datetime.fromtimestamp(x).hour)
data["weekday"] = data["time"].apply(lambda x:datetime.datetime.fromtimestamp(x).weekday())
# data["hour"] = data["time"].apply(lambda x:datetime.datetime.fromtimestamp(x).hour)
# data["weekday"] = data["time"].apply(lambda x:datetime.datetime.fromtimestamp(x).weekday())
# 数值是0的特征会被ffm格式删除,经过下面的处理后,没有数值是0的特征
data.loc[data["hour"]==0] = 24
data.loc[data["weekday"]==0] = 7
data["hour"] = data["hour"].astype("category")
data["weekday"] = data["weekday"].astype("category")
# data.loc[data["hour"]==0] = 24
# data.loc[data["weekday"]==0] = 7
# data["hour"] = data["hour"].astype("category")
# data["weekday"] = data["weekday"].astype("category")
data = data.drop("time",axis=1)
print("成功从time特征中抽取hour、weekday")
print(data.head(2))
......
......@@ -59,13 +59,13 @@ def queue_compare(old_list, new_list):
x_dict = dict(zip(old_list, temp))
temp = list(range(len(new_list)))
y_dict = dict(zip(new_list, temp))
i = 0
for key in x_dict.keys():
if x_dict[key] != y_dict[key]:
i += 1
print("日记队列更新前日记总个数{},位置发生变化个数{},发生变化率{}%".format(len(old_list), i,
round(i / len(old_list) * 100), 2))
if i > 0:
print("日记队列更新前日记总个数{},位置发生变化个数{},发生变化率{}%".format(len(old_list), i,
round(i / len(old_list) * 100), 2))
def move_file():
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment