Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
7dd548c6
Commit
7dd548c6
authored
Jun 25, 2019
by
Your Name
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change predict and sort process
parent
41fc8e97
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
91 additions
and
40 deletions
+91
-40
submit.sh
eda/esmm/Model_pipline/submit.sh
+0
-8
train.py
eda/esmm/Model_pipline/train.py
+91
-32
No files found.
eda/esmm/Model_pipline/submit.sh
View file @
7dd548c6
...
...
@@ -24,14 +24,6 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
15
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/native
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
infer
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
15
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/nearby
--hdfs_dir
=
${
HDFS_PATH
}
/nearby
--task_type
=
infer
echo
"sort and 2sql"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_database.py
echo
"delete files"
rm
/home/gmuser/esmm/
*
.csv
rm
/home/gmuser/esmm/native/
*
rm
/home/gmuser/esmm/nearby/
*
eda/esmm/Model_pipline/train.py
View file @
7dd548c6
#coding=utf-8
#from __future__ import absolute_import
#from __future__ import division
#from __future__ import print_function
#import argparse
import
shutil
import
pymysql
import
os
import
json
from
datetime
import
date
,
timedelta
import
tensorflow
as
tf
import
subprocess
import
time
import
glob
import
random
import
pandas
as
pd
import
datetime
#################### CMD Arguments ####################
FLAGS
=
tf
.
app
.
flags
.
FLAGS
...
...
@@ -63,7 +57,12 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
"tag4_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag5_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag6_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag7_list"
:
tf
.
VarLenFeature
(
tf
.
int64
)
"tag7_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"search_tag2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"search_tag3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"uid"
:
tf
.
VarLenFeature
(
tf
.
string
),
"city"
:
tf
.
VarLenFeature
(
tf
.
string
),
"cid_id"
:
tf
.
VarLenFeature
(
tf
.
string
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
y
=
parsed
.
pop
(
'y'
)
...
...
@@ -102,7 +101,6 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
#print(batch_features,batch_labels)
return
batch_features
,
batch_labels
def
model_fn
(
features
,
labels
,
mode
,
params
):
"""Bulid Model function f(x) for Estimator."""
#------hyperparameters----
...
...
@@ -131,6 +129,12 @@ def model_fn(features, labels, mode, params):
tag5_list
=
features
[
'tag5_list'
]
tag6_list
=
features
[
'tag6_list'
]
tag7_list
=
features
[
'tag7_list'
]
search_tag2_list
=
features
[
'search_tag2_list'
]
search_tag3_list
=
features
[
'search_tag3_list'
]
uid
=
features
[
'uid'
]
city
=
features
[
'city'
]
cid_id
=
features
[
'cid_id'
]
if
FLAGS
.
task_type
!=
"infer"
:
y
=
labels
[
'y'
]
...
...
@@ -149,10 +153,17 @@ def model_fn(features, labels, mode, params):
tag5
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag5_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag6
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag6_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag7
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag7_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
search_tag2
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
search_tag2_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
search_tag3
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
search_tag3_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
app_id
,
level2
,
level3
,
tag1
,
tag2
,
tag3
,
tag4
,
tag5
,
tag6
,
tag7
],
axis
=
1
)
tag2
,
tag3
,
tag4
,
tag5
,
tag6
,
tag7
,
search_tag2
,
search_tag3
],
axis
=
1
)
uid
=
tf
.
sparse
.
to_dense
(
uid
,
default_value
=
""
)
city
=
tf
.
sparse
.
to_dense
(
city
,
default_value
=
""
)
cid_id
=
tf
.
sparse
.
to_dense
(
cid_id
,
default_value
=
""
)
with
tf
.
name_scope
(
"CVR_Task"
):
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
...
...
@@ -198,7 +209,7 @@ def model_fn(features, labels, mode, params):
pcvr
=
tf
.
sigmoid
(
y_cvr
)
pctcvr
=
pctr
*
pcvr
predictions
=
{
"pcvr"
:
pcvr
,
"pctr"
:
pctr
,
"pctcvr"
:
pctcvr
}
predictions
=
{
"pctcvr"
:
pctcvr
,
"uid"
:
uid
,
"city"
:
city
,
"cid_id"
:
cid_id
}
export_outputs
=
{
tf
.
saved_model
.
signature_constants
.
DEFAULT_SERVING_SIGNATURE_DEF_KEY
:
tf
.
estimator
.
export
.
PredictOutput
(
predictions
)}
# Provide an estimator spec for `ModeKeys.PREDICT`
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
...
...
@@ -306,26 +317,26 @@ def set_dist_env():
print
(
json
.
dumps
(
tf_config
))
os
.
environ
[
'TF_CONFIG'
]
=
json
.
dumps
(
tf_config
)
def
main
(
_
):
def
main
(
file_path
):
#------check Arguments------
if
FLAGS
.
dt_dir
==
""
:
FLAGS
.
dt_dir
=
(
date
.
today
()
+
timedelta
(
-
1
))
.
strftime
(
'
%
Y
%
m
%
d'
)
FLAGS
.
model_dir
=
FLAGS
.
model_dir
+
FLAGS
.
dt_dir
#FLAGS.data_dir = FLAGS.data_dir + FLAGS.dt_dir
tr_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/tr/part-r-00000"
]
va_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/va/part-r-00000"
]
te_files
=
[
"
%
s/part-r-00000"
%
FLAGS
.
hdfs_dir
]
if
FLAGS
.
clear_existing_model
:
try
:
shutil
.
rmtree
(
FLAGS
.
model_dir
)
except
Exception
as
e
:
print
(
e
,
"at clear_existing_model"
)
else
:
print
(
"existing model cleaned at
%
s"
%
FLAGS
.
model_dir
)
set_dist_env
()
# if FLAGS.clear_existing_model:
# try:
# shutil.rmtree(FLAGS.model_dir)
# except Exception as e:
# print(e, "at clear_existing_model")
# else:
# print("existing model cleaned at %s" % FLAGS.model_dir)
# set_dist_env()
#------bulid Tasks------
model_params
=
{
...
...
@@ -343,7 +354,7 @@ def main(_):
Estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
,
model_dir
=
FLAGS
.
model_dir
,
params
=
model_params
,
config
=
config
)
if
FLAGS
.
task_type
==
'train'
:
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
input_fn
(
tr_files
,
num_epochs
=
FLAGS
.
num_epochs
,
batch_size
=
FLAGS
.
batch_size
))
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
input_fn
(
file_path
,
num_epochs
=
FLAGS
.
num_epochs
,
batch_size
=
FLAGS
.
batch_size
))
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
input_fn
(
va_files
,
num_epochs
=
1
,
batch_size
=
FLAGS
.
batch_size
),
steps
=
None
,
start_delay_secs
=
1000
,
throttle_secs
=
1200
)
result
=
tf
.
estimator
.
train_and_evaluate
(
Estimator
,
train_spec
,
eval_spec
)
for
key
,
value
in
sorted
(
result
[
0
]
.
items
()):
...
...
@@ -353,18 +364,67 @@ def main(_):
for
key
,
value
in
sorted
(
result
.
items
()):
print
(
'
%
s:
%
s'
%
(
key
,
value
))
elif
FLAGS
.
task_type
==
'infer'
:
preds
=
Estimator
.
predict
(
input_fn
=
lambda
:
input_fn
(
te_files
,
num_epochs
=
1
,
batch_size
=
FLAGS
.
batch_size
),
predict_keys
=
[
"pctcvr"
,
"pctr"
,
"pcvr"
])
with
open
(
FLAGS
.
local_dir
+
"/pred.txt"
,
"w"
)
as
fo
:
for
prob
in
preds
:
fo
.
write
(
"
%
f
\t
%
f
\t
%
f
\n
"
%
(
prob
[
'pctr'
],
prob
[
'pcvr'
],
prob
[
'pctcvr'
]))
preds
=
Estimator
.
predict
(
input_fn
=
lambda
:
input_fn
(
file_path
,
num_epochs
=
1
,
batch_size
=
FLAGS
.
batch_size
),
predict_keys
=
[
"pctcvr"
,
"uid"
,
"city"
,
"cid_id"
])
result
=
[]
for
prob
in
preds
:
result
.
append
([
str
(
prob
[
"uid"
][
0
]),
str
(
prob
[
"city"
][
0
]),
str
(
prob
[
"cid_id"
][
0
]),
str
(
prob
[
'pctcvr'
])])
return
result
elif
FLAGS
.
task_type
==
'export'
:
print
(
"Not Implemented, Do It Yourself!"
)
def
trans
(
x
):
return
str
(
x
)[
2
:
-
1
]
if
str
(
x
)[
0
]
==
'b'
else
x
def
set_join
(
lst
):
l
=
lst
.
unique
()
.
tolist
()
r
=
[
str
(
i
)
for
i
in
l
]
r
=
r
[:
500
]
return
','
.
join
(
r
)
def
df_sort
(
result
,
queue_name
):
df
=
pd
.
DataFrame
(
result
,
columns
=
[
"uid"
,
"city"
,
"cid_id"
,
"pctcvr"
])
# print(df.head(10))
df
[
'uid1'
]
=
df
[
'uid'
]
.
apply
(
trans
)
df
[
'city1'
]
=
df
[
'city'
]
.
apply
(
trans
)
df
[
'cid_id1'
]
=
df
[
'cid_id'
]
.
apply
(
trans
)
df2
=
df
.
groupby
(
by
=
[
"uid1"
,
"city1"
])
.
apply
(
lambda
x
:
x
.
sort_values
(
by
=
"pctcvr"
,
ascending
=
False
))
\
.
reset_index
(
drop
=
True
)
.
groupby
(
by
=
[
"uid1"
,
"city1"
])
.
agg
({
'cid_id1'
:
set_join
})
.
reset_index
(
drop
=
False
)
df2
.
columns
=
[
"device_id"
,
"city_id"
,
queue_name
]
df2
[
"time"
]
=
str
(
datetime
.
datetime
.
now
()
.
strftime
(
'
%
Y
%
m
%
d
%
H
%
M'
))
return
df2
def
update_or_insert
(
df2
,
queue_name
):
device_count
=
df2
.
shape
[
0
]
con
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
,
charset
=
'utf8'
)
cur
=
con
.
cursor
()
try
:
for
i
in
range
(
0
,
device_count
):
query
=
"""INSERT INTO esmm_device_diary_queue (device_id, city_id, time,
%
s) VALUES('
%
s', '
%
s', '
%
s', '
%
s')
\
ON DUPLICATE KEY UPDATE device_id='
%
s', city_id='
%
s', time='
%
s',
%
s='
%
s'"""
%
(
queue_name
,
df2
.
device_id
[
i
],
df2
.
city_id
[
i
],
df2
.
time
[
i
],
df2
[
queue_name
][
i
],
df2
.
device_id
[
i
],
df2
.
city_id
[
i
],
df2
.
time
[
i
],
queue_name
,
df2
[
queue_name
][
i
])
cur
.
execute
(
query
)
con
.
commit
()
con
.
close
()
print
(
"insert or update sucess"
)
except
Exception
as
e
:
print
(
e
)
if
__name__
==
"__main__"
:
b
=
time
.
time
()
path
=
"hdfs://172.16.32.4:8020/strategy/esmm/"
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
tf
.
app
.
run
()
if
FLAGS
.
task_type
==
'train'
:
print
(
"train task"
)
tr_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/tr/part-r-00000"
]
main
(
tr_files
)
elif
FLAGS
.
task_type
==
'infer'
:
te_files
=
[
"
%
s/part-r-00000"
%
FLAGS
.
hdfs_dir
]
queue_name
=
te_files
[
0
]
.
split
(
'/'
)[
-
2
]
+
"_queue"
print
(
queue_name
+
" task"
)
result
=
main
(
te_files
)
df
=
df_sort
(
result
,
queue_name
)
update_or_insert
(
df
,
queue_name
)
print
(
"耗时(分钟):"
)
print
((
time
.
time
()
-
b
)
/
60
)
\ No newline at end of file
print
((
time
.
time
()
-
b
)
/
60
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment