Commit 8a7ba975 authored by 张彦钊's avatar 张彦钊

ass

parent df53b81f
......@@ -6,16 +6,12 @@ url="http://doris.paas.test/v1/once"
# 如果在生产环境doris 01上执行,把url改成"http://127.0.0.1:4050/v1/once"
header_dict={'Content-Type': 'application/x-www-form-urlencoded'}
param_dict={}
# param_dict["method"]="doris/search/top_doctor"
#
# param_detail = {"size":10, "offset":0, "is_officer":True,"device_id":"hello",
# "user_city_tag_id":328}
# param_dict["method"]="doris/search/doctor_officer"
# param_detail = {"device_id": 'xx',"size": 10,"offset":0, "query": "双眼皮","user_city_tag_id": 328,"is_officer":False}
param_dict["method"]="doris/search/doctor_officer"
param_detail = {"device_id": 'xx',"size": 10,"offset":0, "query": "双眼皮","user_city_tag_id": 328,"is_officer":False}
param_dict["method"]="doris/search/bangdan"
param_detail = {"device_id": '2',"size": 10,"offset":0, "user_city_tag_id": 328,"is_officer":False,"unit_ids":[]}
# param_dict["method"]="doris/search/bangdan"
# param_detail = {"device_id": '2',"size": 10,"offset":0, "user_city_tag_id": 328,"is_officer":False,"unit_ids":[]}
# a = [105, 2941, 780, 102, 873, 2060, 187, 2935, 2108, 912, 928, 2059, 4437, 822, 2866, 2778, 824, 821, 2938]
......
......@@ -6,58 +6,6 @@ import pandas as pd
def doctor():
date_str = (datetime.datetime.now() - datetime.timedelta(days=1)).strftime("%Y%m%d")
date_tmp = (datetime.datetime.now() - datetime.timedelta(days=1)).strftime("%Y-%m-%d")
# sql = "select distinct doctor_id from statistic_doctor_rank_factor where partition_date = '{}'".format(date_str)
# doctor_list = pd.DataFrame(list(result))[0].values.tolist()
sql = "select d.doctor_id,d.service_exposure_pv_30,d.service_ctr_30,d.expert_exposure_pv_30,d.expert_pv_30," \
"b.merchant_id," \
"m.doctor_ad_money_30_days,m.expand_rechange_amount_30,m.service_pv_30,m.expert_pv_30,m.organization_pv_30," \
"budan.budan_payment_30_days " \
"from statistic_doctor_rank_factor d " \
"left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \
"left join statistic_merchant_rank_factor m on b.merchant_id = m.merchant_id " \
"left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id " \
"where d.partition_date = '{}' and m.partition_date = '{}' " \
"and budan.stat_date = '{}';".format(date_str,date_str,date_tmp)
db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor()
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
name = ["doctor_id","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
"merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
"mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
df = df.rename(columns=dict(zip(list(range(len(name))),name)))
for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
"doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
"mexpert_pv_30", "organization_pv_30", "budan_payment_30_days"]:
df[i] = df[i].astype("float")
df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
df = df[~df["expert_exposure_pv_30"].isin([0.0])]
df = df[~df["all_exposure"].isin([0.0])]
df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
df = df[~df["tmp"].isin([0.0])]
df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"])
df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
df["score"] = df["ctr"]**0.5 * (df["commission"] + df["pv_ad"])
columns = ["score","ctr","commission","pv_ad","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
"merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
"mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
data = df.loc[:, columns]
# print(data)
data.to_csv('/home/gmuser/doctor.csv',index=False)
def v1_doctor():
date_str = (datetime.datetime.now() - datetime.timedelta(days=1)).strftime("%Y%m%d")
date_tmp = (datetime.datetime.now() - datetime.timedelta(days=1)).strftime("%Y-%m-%d")
sql = "select d.doctor_id,d.service_exposure_pv_30,d.service_ctr_30,d.expert_exposure_pv_30,d.expert_pv_30," \
"b.merchant_id,budan.budan_payment_30_days " \
......@@ -109,12 +57,13 @@ def v1_doctor():
df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
df["score"] = df["ctr"]**0.5 * (df["commission"] + df["pv_ad"])
columns = ["score","ctr","commission","pv_ad","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
columns = ["doctor_id","score","ctr","commission","pv_ad","service_exposure_pv_30",
"service_ctr_30","expert_exposure_pv_30","expert_pv_30",
"merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
"mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
data = df.loc[:, columns]
print(data.head(6))
data.to_csv('/home/gmuser/doctor.csv',index=False)
print("doctor end")
def hospital():
......@@ -179,14 +128,17 @@ def hospital():
df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
df["cpt"] = df["doctor_discount_30_days"]/df["tmp"]
df["score"] = df["ctr"]**0.5 * (df["commission"] + df["cpt"])
columns = ["score","ctr","commission","cpt","hospital_exposure_pv_30","service_exposure_pv_30",
"expert_exposure_pv_30",
"service_ctr_30","hospital_ctr_30","expert_ctr_30", "service_pv_30",
"mexpert_pv_30", "organization_pv_30"]
columns = ["doctor_id","score","ctr","commission","cpt","hospital_id","hospital_exposure_pv_30",
"service_exposure_pv_30","expert_exposure_pv_30",
"service_ctr_30","hospital_ctr_30","expert_ctr_30","merchant_id","budan_payment_30_days",
"doctor_ad_money_30_days","service_pv_30","mexpert_pv_30","organization_pv_30",
"doctor_discount_30_days"]
data = df.loc[:, columns]
print(data.head(6))
data.to_csv('/home/gmuser/hospital.csv',index=False)
if __name__ == "__main__":
doctor()
hospital()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment