Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
8a7ba975
Commit
8a7ba975
authored
Feb 20, 2020
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ass
parent
df53b81f
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
14 additions
and
66 deletions
+14
-66
ai_test.py
ai_test.py
+4
-8
make_data.py
make_data.py
+10
-58
No files found.
ai_test.py
View file @
8a7ba975
...
...
@@ -6,16 +6,12 @@ url="http://doris.paas.test/v1/once"
# 如果在生产环境doris 01上执行,把url改成"http://127.0.0.1:4050/v1/once"
header_dict
=
{
'Content-Type'
:
'application/x-www-form-urlencoded'
}
param_dict
=
{}
# param_dict["method"]="doris/search/top_doctor"
#
# param_detail = {"size":10, "offset":0, "is_officer":True,"device_id":"hello",
# "user_city_tag_id":328}
#
param_dict["method"]="doris/search/doctor_officer"
#
param_detail = {"device_id": 'xx',"size": 10,"offset":0, "query": "双眼皮","user_city_tag_id": 328,"is_officer":False}
param_dict
[
"method"
]
=
"doris/search/doctor_officer"
param_detail
=
{
"device_id"
:
'xx'
,
"size"
:
10
,
"offset"
:
0
,
"query"
:
"双眼皮"
,
"user_city_tag_id"
:
328
,
"is_officer"
:
False
}
param_dict
[
"method"
]
=
"doris/search/bangdan"
param_detail
=
{
"device_id"
:
'2'
,
"size"
:
10
,
"offset"
:
0
,
"user_city_tag_id"
:
328
,
"is_officer"
:
False
,
"unit_ids"
:[]}
#
param_dict["method"]="doris/search/bangdan"
#
param_detail = {"device_id": '2',"size": 10,"offset":0, "user_city_tag_id": 328,"is_officer":False,"unit_ids":[]}
# a = [105, 2941, 780, 102, 873, 2060, 187, 2935, 2108, 912, 928, 2059, 4437, 822, 2866, 2778, 824, 821, 2938]
...
...
make_data.py
View file @
8a7ba975
...
...
@@ -6,58 +6,6 @@ import pandas as pd
def
doctor
():
date_str
=
(
datetime
.
datetime
.
now
()
-
datetime
.
timedelta
(
days
=
1
))
.
strftime
(
"
%
Y
%
m
%
d"
)
date_tmp
=
(
datetime
.
datetime
.
now
()
-
datetime
.
timedelta
(
days
=
1
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
# sql = "select distinct doctor_id from statistic_doctor_rank_factor where partition_date = '{}'".format(date_str)
# doctor_list = pd.DataFrame(list(result))[0].values.tolist()
sql
=
"select d.doctor_id,d.service_exposure_pv_30,d.service_ctr_30,d.expert_exposure_pv_30,d.expert_pv_30,"
\
"b.merchant_id,"
\
"m.doctor_ad_money_30_days,m.expand_rechange_amount_30,m.service_pv_30,m.expert_pv_30,m.organization_pv_30,"
\
"budan.budan_payment_30_days "
\
"from statistic_doctor_rank_factor d "
\
"left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id "
\
"left join statistic_merchant_rank_factor m on b.merchant_id = m.merchant_id "
\
"left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id "
\
"where d.partition_date = '{}' and m.partition_date = '{}' "
\
"and budan.stat_date = '{}';"
.
format
(
date_str
,
date_str
,
date_tmp
)
db
=
pymysql
.
connect
(
host
=
'172.16.30.143'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'BJQaT9VzDcuPBqkd'
,
db
=
'zhengxing'
)
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
name
=
[
"doctor_id"
,
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]
df
=
df
.
rename
(
columns
=
dict
(
zip
(
list
(
range
(
len
(
name
))),
name
)))
for
i
in
[
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]:
df
[
i
]
=
df
[
i
]
.
astype
(
"float"
)
df
[
"all_exposure"
]
=
df
[
"service_exposure_pv_30"
]
+
df
[
"expert_exposure_pv_30"
]
df
=
df
[
~
df
[
"expert_exposure_pv_30"
]
.
isin
([
0.0
])]
df
=
df
[
~
df
[
"all_exposure"
]
.
isin
([
0.0
])]
df
[
"tmp"
]
=
df
[
"service_pv_30"
]
+
df
[
"mexpert_pv_30"
]
+
df
[
"organization_pv_30"
]
df
=
df
[
~
df
[
"tmp"
]
.
isin
([
0.0
])]
df
[
"ctr"
]
=
df
[
"service_exposure_pv_30"
]
/
df
[
"all_exposure"
]
*
df
[
"service_ctr_30"
]
+
\
df
[
"expert_exposure_pv_30"
]
/
df
[
"all_exposure"
]
*
(
df
[
"expert_pv_30"
]
/
df
[
"expert_exposure_pv_30"
])
df
[
"commission"
]
=
(
df
[
"doctor_ad_money_30_days"
]
+
df
[
"budan_payment_30_days"
])
/
df
[
"tmp"
]
df
[
"pv_ad"
]
=
df
[
"expand_rechange_amount_30"
]
/
df
[
"tmp"
]
df
[
"score"
]
=
df
[
"ctr"
]
**
0.5
*
(
df
[
"commission"
]
+
df
[
"pv_ad"
])
columns
=
[
"score"
,
"ctr"
,
"commission"
,
"pv_ad"
,
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]
data
=
df
.
loc
[:,
columns
]
# print(data)
data
.
to_csv
(
'/home/gmuser/doctor.csv'
,
index
=
False
)
def
v1_doctor
():
date_str
=
(
datetime
.
datetime
.
now
()
-
datetime
.
timedelta
(
days
=
1
))
.
strftime
(
"
%
Y
%
m
%
d"
)
date_tmp
=
(
datetime
.
datetime
.
now
()
-
datetime
.
timedelta
(
days
=
1
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
sql
=
"select d.doctor_id,d.service_exposure_pv_30,d.service_ctr_30,d.expert_exposure_pv_30,d.expert_pv_30,"
\
"b.merchant_id,budan.budan_payment_30_days "
\
...
...
@@ -109,12 +57,13 @@ def v1_doctor():
df
[
"commission"
]
=
(
df
[
"doctor_ad_money_30_days"
]
+
df
[
"budan_payment_30_days"
])
/
df
[
"tmp"
]
df
[
"pv_ad"
]
=
df
[
"expand_rechange_amount_30"
]
/
df
[
"tmp"
]
df
[
"score"
]
=
df
[
"ctr"
]
**
0.5
*
(
df
[
"commission"
]
+
df
[
"pv_ad"
])
columns
=
[
"score"
,
"ctr"
,
"commission"
,
"pv_ad"
,
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
columns
=
[
"doctor_id"
,
"score"
,
"ctr"
,
"commission"
,
"pv_ad"
,
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]
data
=
df
.
loc
[:,
columns
]
print
(
data
.
head
(
6
))
data
.
to_csv
(
'/home/gmuser/doctor.csv'
,
index
=
False
)
print
(
"doctor end"
)
def
hospital
():
...
...
@@ -179,14 +128,17 @@ def hospital():
df
[
"commission"
]
=
(
df
[
"doctor_ad_money_30_days"
]
+
df
[
"budan_payment_30_days"
])
/
df
[
"tmp"
]
df
[
"cpt"
]
=
df
[
"doctor_discount_30_days"
]
/
df
[
"tmp"
]
df
[
"score"
]
=
df
[
"ctr"
]
**
0.5
*
(
df
[
"commission"
]
+
df
[
"cpt"
])
columns
=
[
"score"
,
"ctr"
,
"commission"
,
"cpt"
,
"hospital_exposure_pv_30"
,
"service_exposure_pv_30"
,
"expert_exposure_pv_30"
,
"service_ctr_30"
,
"hospital_ctr_30"
,
"expert_ctr_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
]
columns
=
[
"doctor_id"
,
"score"
,
"ctr"
,
"commission"
,
"cpt"
,
"hospital_id"
,
"hospital_exposure_pv_30"
,
"service_exposure_pv_30"
,
"expert_exposure_pv_30"
,
"service_ctr_30"
,
"hospital_ctr_30"
,
"expert_ctr_30"
,
"merchant_id"
,
"budan_payment_30_days"
,
"doctor_ad_money_30_days"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"doctor_discount_30_days"
]
data
=
df
.
loc
[:,
columns
]
print
(
data
.
head
(
6
))
data
.
to_csv
(
'/home/gmuser/hospital.csv'
,
index
=
False
)
if
__name__
==
"__main__"
:
doctor
()
hospital
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment