Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
9a702328
Commit
9a702328
authored
Dec 19, 2018
by
王志伟
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
http://git.wanmeizhensuo.com/ML/ffm-baseline
parents
7552abd1
b321f0b0
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
24 additions
and
38 deletions
+24
-38
ffm.py
tensnsorflow/ffm.py
+24
-38
No files found.
tensnsorflow/ffm.py
View file @
9a702328
...
...
@@ -14,7 +14,7 @@ def con_sql(db,sql):
try
:
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
.
dropna
()
df
=
pd
.
DataFrame
(
list
(
result
))
except
Exception
:
print
(
"发生异常"
,
Exception
)
df
=
pd
.
DataFrame
()
...
...
@@ -138,38 +138,34 @@ class multiFFMFormatPandas:
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_
test
"
sql
=
"select max(stat_date) from esmm_train_
data
"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
1
5
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
1
8
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.device_id,e.y,e.z,e.stat_date,e.ucity_id,e.cid_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,"
\
"home.jingxuan,home.zhibo,home.nose,home.eyes,home.weizheng,home.teeth,home.lunkuo,"
\
"home.meifu,home.xizhi,home.zhifang,home.longxiong,home.simi,home.maofa,home.gongli,home.korea "
\
"from esmm_train_test e left join user_feature u on e.device_id = u.device_id "
\
"left join home_tab_click home on e.device_id = home.device_id "
\
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time "
\
"from esmm_train_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
})
print
(
df
.
shape
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
})
print
(
"esmm data ok"
)
print
(
df
.
head
(
2
))
ucity_id
=
list
(
set
(
df
[
"ucity_id"
]
.
values
.
tolist
()))
cid
=
list
(
set
(
df
[
"cid_id"
]
.
values
.
tolist
()))
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
df
[
"z"
]
=
df
[
"z"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"stat_date"
]
.
str
.
cat
([
df
[
"device_id"
]
.
values
.
tolist
(),
df
[
"ucity_id"
]
.
values
.
tolist
(),
df
[
"cid_id"
]
.
values
.
tolist
(),
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"device_id"
],
axis
=
1
)
.
fillna
(
0.0
)
df
[
"y"
]
=
df
[
"stat_date"
]
.
str
.
cat
([
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"stat_date"
],
axis
=
1
)
.
fillna
(
0.0
)
print
(
df
.
head
(
2
))
features
=
len
(
df
[
"ucity_id"
]
.
unique
())
print
(
"fields:{}"
.
format
(
df
.
shape
[
1
]
-
1
))
print
(
"features:{}"
.
format
(
len
(
cid
)
))
return
df
,
validate_date
,
ucity_id
,
cid
print
(
"features:{}"
.
format
(
features
))
return
df
,
validate_date
,
ucity_id
def
transform
(
a
,
validate_date
):
...
...
@@ -177,13 +173,10 @@ def transform(a,validate_date):
df
=
model
.
fit_transform
(
a
,
y
=
"y"
,
n
=
160000
,
processes
=
22
)
df
=
pd
.
DataFrame
(
df
)
df
[
"stat_date"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
0
])
df
[
"device_id"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
1
])
df
[
"city_id"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
2
])
df
[
"cid"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
3
])
df
[
"number"
]
=
np
.
random
.
randint
(
1
,
2147483647
,
df
.
shape
[
0
])
df
[
"seq"
]
=
list
(
range
(
df
.
shape
[
0
]))
df
[
"seq"
]
=
df
[
"seq"
]
.
astype
(
"str"
)
df
[
"data"
]
=
df
[
0
]
.
apply
(
lambda
x
:
","
.
join
(
x
.
split
(
","
)[
4
:]))
df
[
"data"
]
=
df
[
0
]
.
apply
(
lambda
x
:
","
.
join
(
x
.
split
(
","
)[
1
:]))
df
[
"data"
]
=
df
[
"seq"
]
.
str
.
cat
(
df
[
"data"
],
sep
=
","
)
df
=
df
.
drop
([
0
,
"seq"
],
axis
=
1
)
print
(
df
.
head
(
2
))
...
...
@@ -200,27 +193,21 @@ def transform(a,validate_date):
return
model
def
get_predict_set
(
ucity_id
,
cid
,
model
):
def
get_predict_set
(
ucity_id
,
model
):
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.device_id,e.y,e.z,e.stat_date,e.ucity_id,e.cid_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,"
\
"home.jingxuan,home.zhibo,home.nose,home.eyes,home.weizheng,home.teeth,home.lunkuo,"
\
"home.meifu,home.xizhi,home.zhifang,home.longxiong,home.simi,home.maofa,home.gongli,home.korea,e.label "
\
sql
=
"select e.y,e.z,e.label,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time "
\
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id "
\
"left join home_tab_click home on e.device_id = home.device_id"
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid = cid_time.cid_id"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
,
26
:
"label"
})
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"label"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
})
print
(
"before filter:"
)
print
(
df
.
shape
)
df
=
df
[
df
[
"cid_id"
]
.
isin
(
cid
)]
print
(
"after cid filter:"
)
print
(
df
.
shape
)
df
=
df
[
df
[
"ucity_id"
]
.
isin
(
ucity_id
)]
print
(
"after ucity filter:"
)
print
(
df
.
shape
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
df
[
"z"
]
=
df
[
"z"
]
.
astype
(
"str"
)
df
[
"label"
]
=
df
[
"label"
]
.
astype
(
"str"
)
...
...
@@ -258,13 +245,12 @@ def get_predict_set(ucity_id, cid,model):
if
__name__
==
"__main__"
:
path
=
"/home/g
aoyazhe/esmm/data
/"
path
=
"/home/g
muser/ffm
/"
a
=
time
.
time
()
df
,
validate_date
,
ucity_id
,
cid
=
get_data
()
df
,
validate_date
,
ucity_id
=
get_data
()
model
=
transform
(
df
,
validate_date
)
get_predict_set
(
ucity_id
,
c
id
,
model
)
# get_predict_set(ucity_
id,model)
b
=
time
.
time
()
print
(
"cost(分钟)"
)
print
((
b
-
a
)
/
60
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment