Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
a0c75290
Commit
a0c75290
authored
May 13, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'zhao' into 'master'
Zhao See merge request
!17
parents
3049b5b5
d0ed7c24
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
78 additions
and
11 deletions
+78
-11
feature.py
eda/esmm/Model_pipline/feature.py
+33
-6
to_tfrecord.py
eda/esmm/Model_pipline/to_tfrecord.py
+16
-1
train.py
eda/esmm/Model_pipline/train.py
+24
-3
multi.py
tensnsorflow/multi.py
+5
-1
No files found.
eda/esmm/Model_pipline/feature.py
View file @
a0c75290
...
...
@@ -36,19 +36,29 @@ def get_data():
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,e.device_id,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids,feat.level2 "
\
"u.channel,c.top,e.device_id,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids,feat.level2,"
\
"wiki.tag,question.tag,search.tag,budan.tag,order_tag.tag,sixin.tag,cart.tag "
\
"from {} e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id "
\
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
"left join device_app_list dl on e.device_id = dl.device_id "
\
"left join diary_feat feat on e.cid_id = feat.diary_id "
\
"left join wiki_tag wiki on e.device_id = wiki.device_id "
\
"left join question_tag question on e.device_id = question.device_id "
\
"left join search_tag search on e.device_id = search.device_id "
\
"left join budan_tag budan on e.device_id = budan.device_id "
\
"left join order_tag on e.device_id = order_tag.device_id "
\
"left join sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join cart_tag cart on e.device_id = cart.device_id "
\
"where e.stat_date >= '{}'"
.
format
(
train_data_set
,
start
)
# 上面order_tag 表不要简称为order,因为order是mysql的保留字,例如order by
df
=
con_sql
(
db
,
sql
)
# print(df.shape)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel2_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"device_id"
,
11
:
"time"
,
12
:
"app_list"
,
13
:
"service_id"
,
14
:
"level3_ids"
,
15
:
"level2"
})
11
:
"time"
,
12
:
"app_list"
,
13
:
"service_id"
,
14
:
"level3_ids"
,
15
:
"level2"
,
16
:
"tag1"
,
17
:
"tag2"
,
18
:
"tag3"
,
19
:
"tag4"
,
20
:
"tag5"
,
21
:
"tag6"
,
22
:
"tag7"
})
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time "
\
...
...
@@ -89,6 +99,10 @@ def get_data():
level2_number
,
level2_map
=
multi_hot
(
df
,
"clevel2_id"
,
2
+
app_list_number
)
level3_number
,
level3_map
=
multi_hot
(
df
,
"level3_ids"
,
2
+
app_list_number
+
level2_number
)
for
i
in
[
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
]:
df
[
i
]
=
df
[
i
]
.
fillna
(
"lost_na"
)
df
[
i
]
=
df
[
i
]
.
apply
(
app_list_func
,
args
=
(
level2_map
,))
unique_values
=
[]
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
...
...
@@ -105,8 +119,9 @@ def get_data():
value_map
=
dict
(
zip
(
unique_values
,
temp
))
df
=
df
.
drop
(
"device_id"
,
axis
=
1
)
# 最近一天的数据集放进训练集,这样用户的正、负反馈能及时获取
#
TODO 上线后把
最近一天的数据集放进训练集,这样用户的正、负反馈能及时获取
train
=
df
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
for
i
in
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
...
...
@@ -151,17 +166,25 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,feat.level2 "
\
"dl.app_list,e.hospital_id,feat.level3_ids,feat.level2,"
\
"wiki.tag,question.tag,search.tag,budan.tag,order_tag.tag,sixin.tag,cart.tag "
\
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id "
\
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
"left join device_app_list dl on e.device_id = dl.device_id "
\
"left join diary_feat feat on e.cid_id = feat.diary_id"
"left join diary_feat feat on e.cid_id = feat.diary_id "
\
"left join wiki_tag wiki on e.device_id = wiki.device_id "
\
"left join question_tag question on e.device_id = question.device_id "
\
"left join search_tag search on e.device_id = search.device_id "
\
"left join budan_tag budan on e.device_id = budan.device_id "
\
"left join order_tag on e.device_id = order_tag.device_id "
\
"left join sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join cart_tag cart on e.device_id = cart.device_id"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"label"
,
3
:
"ucity_id"
,
4
:
"clevel2_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"device_id"
,
11
:
"cid_id"
,
12
:
"time"
,
13
:
"app_list"
,
14
:
"hospital_id"
,
15
:
"level3_ids"
,
16
:
"level2"
})
16
:
"level2"
,
17
:
"tag1"
,
18
:
"tag2"
,
19
:
"tag3"
,
20
:
"tag4"
,
21
:
"tag5"
,
22
:
"tag6"
,
23
:
"tag7"
})
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time "
\
...
...
@@ -185,6 +208,10 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
df
[
"level3_ids"
]
=
df
[
"level3_ids"
]
.
fillna
(
"lost_na"
)
df
[
"level3_ids"
]
=
df
[
"level3_ids"
]
.
apply
(
app_list_func
,
args
=
(
level3_map
,))
for
i
in
[
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
]:
df
[
i
]
=
df
[
i
]
.
fillna
(
"lost_na"
)
df
[
i
]
=
df
[
i
]
.
apply
(
app_list_func
,
args
=
(
level2_map
,))
# print("predict shape")
# print(df.shape)
df
[
"uid"
]
=
df
[
"device_id"
]
...
...
eda/esmm/Model_pipline/to_tfrecord.py
View file @
a0c75290
...
...
@@ -36,13 +36,28 @@ def gen_tfrecords(in_file):
app_list
=
np
.
array
(
str
(
df
[
"app_list"
][
i
])
.
split
(
","
))
level2_list
=
np
.
array
(
str
(
df
[
"clevel2_id"
][
i
])
.
split
(
","
))
level3_list
=
np
.
array
(
str
(
df
[
"level3_ids"
][
i
])
.
split
(
","
))
tag1_list
=
np
.
array
(
str
(
df
[
"tag1"
][
i
])
.
split
(
","
))
tag2_list
=
np
.
array
(
str
(
df
[
"tag2"
][
i
])
.
split
(
","
))
tag3_list
=
np
.
array
(
str
(
df
[
"tag3"
][
i
])
.
split
(
","
))
tag4_list
=
np
.
array
(
str
(
df
[
"tag4"
][
i
])
.
split
(
","
))
tag5_list
=
np
.
array
(
str
(
df
[
"tag5"
][
i
])
.
split
(
","
))
tag6_list
=
np
.
array
(
str
(
df
[
"tag6"
][
i
])
.
split
(
","
))
tag7_list
=
np
.
array
(
str
(
df
[
"tag7"
][
i
])
.
split
(
","
))
features
=
tf
.
train
.
Features
(
feature
=
{
"y"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"y"
][
i
]])),
"z"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"z"
][
i
]])),
"ids"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
id
.
astype
(
np
.
int
))),
"app_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
app_list
.
astype
(
np
.
int
))),
"level2_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level2_list
.
astype
(
np
.
int
))),
"level3_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level3_list
.
astype
(
np
.
int
)))
"level3_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level3_list
.
astype
(
np
.
int
))),
"tag1_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
tag1_list
.
astype
(
np
.
int
))),
"tag2_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
tag2_list
.
astype
(
np
.
int
))),
"tag3_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
tag3_list
.
astype
(
np
.
int
))),
"tag4_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
tag4_list
.
astype
(
np
.
int
))),
"tag5_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
tag5_list
.
astype
(
np
.
int
))),
"tag6_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
tag6_list
.
astype
(
np
.
int
))),
"tag7_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
tag7_list
.
astype
(
np
.
int
)))
})
example
=
tf
.
train
.
Example
(
features
=
features
)
...
...
eda/esmm/Model_pipline/train.py
View file @
a0c75290
...
...
@@ -54,7 +54,14 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
"ids"
:
tf
.
FixedLenFeature
([
FLAGS
.
field_size
],
tf
.
int64
),
"app_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
)
"level3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag1_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag4_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag5_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag6_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag7_list"
:
tf
.
VarLenFeature
(
tf
.
int64
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
...
...
@@ -103,6 +110,13 @@ def model_fn(features, labels, mode, params):
app_list
=
features
[
'app_list'
]
level2_list
=
features
[
'level2_list'
]
level3_list
=
features
[
'level3_list'
]
tag1_list
=
features
[
'tag1_list'
]
tag2_list
=
features
[
'tag2_list'
]
tag3_list
=
features
[
'tag3_list'
]
tag4_list
=
features
[
'tag4_list'
]
tag5_list
=
features
[
'tag5_list'
]
tag6_list
=
features
[
'tag6_list'
]
tag7_list
=
features
[
'tag7_list'
]
if
FLAGS
.
task_type
!=
"infer"
:
y
=
labels
[
'y'
]
...
...
@@ -114,10 +128,17 @@ def model_fn(features, labels, mode, params):
app_id
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
app_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
level2
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
level2_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
level3
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
level3_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag1
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag1_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag2
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag2_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag3
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag3_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag4
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag4_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag5
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag5_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag6
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag6_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
tag7
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
tag7_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
app_id
,
level2
,
level3
],
axis
=
1
)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
app_id
,
level2
,
level3
,
tag1
,
tag2
,
tag3
,
tag4
,
tag5
,
tag6
,
tag7
],
axis
=
1
)
with
tf
.
name_scope
(
"CVR_Task"
):
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
...
...
tensnsorflow/multi.py
View file @
a0c75290
...
...
@@ -32,12 +32,16 @@ def multi_hot(df,column,n):
def
feature_engineer
():
# TODO 删除下面的测试写入
df
=
spark
.
sql
(
"select y,z from esmm_train_data limit 60"
)
df
.
write
.
format
(
"avro"
)
.
save
(
path
=
path
+
"tr"
,
mode
=
"overwrite"
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
3
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
2
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment