Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
a4c31b88
Commit
a4c31b88
authored
Oct 09, 2019
by
高雅喆
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
evaluation metrics
parent
a578114c
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
127 additions
and
0 deletions
+127
-0
__init__.py
eda/__init__.py
+0
-0
__init__.py
eda/smart_rank/__init__.py
+0
-0
evaluation_metrics.py
eda/smart_rank/evaluation_metrics.py
+127
-0
No files found.
eda/__init__.py
0 → 100644
View file @
a4c31b88
eda/smart_rank/__init__.py
0 → 100644
View file @
a4c31b88
eda/smart_rank/evaluation_metrics.py
View file @
a4c31b88
import
pymysql
import
redis
import
datetime
import
time
import
json
import
numpy
as
np
import
pandas
as
pd
from
eda.smart_rank.dist_update_user_portrait_service
import
*
def
get_user_service_portrait_not_alipay
(
cl_id
,
all_word_tags
,
all_tag_tag_type
,
all_3tag_2tag
,
size
=
10
):
try
:
db_jerry_test
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
,
charset
=
'utf8'
)
cur_jerry_test
=
db_jerry_test
.
cursor
()
# 用户的非搜索、支付的行为
user_df_service_sql
=
"select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log "
\
"where cl_id ='{}' and action not in "
\
"('api/settlement/alipay_callback','do_search')"
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
user_df_service_sql
)
data
=
list
(
cur_jerry_test
.
fetchall
())
if
data
:
user_df_service
=
pd
.
DataFrame
(
data
)
user_df_service
.
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
]
else
:
user_df_service
=
pd
.
DataFrame
(
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
])
# 用户的搜索行为
user_df_search_sql
=
"select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log "
\
"where cl_id ='{}' and action = 'do_search'"
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
user_df_search_sql
)
data_search
=
list
(
cur_jerry_test
.
fetchall
())
db_jerry_test
.
close
()
if
data_search
:
user_df_search
=
pd
.
DataFrame
(
data_search
)
user_df_search
.
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
]
else
:
user_df_search
=
pd
.
DataFrame
(
columns
=
[
"time"
,
"cl_id"
,
"score_type"
,
"tag_id"
,
"tag_referrer"
,
"action"
])
# 搜索词转成tag
# user_df_search_2_tag = pd.DataFrame(columns=list(user_df_service.columns))
for
index
,
row
in
user_df_search
.
iterrows
():
if
row
[
'tag_referrer'
]
in
all_word_tags
:
for
search_tag
in
all_word_tags
[
row
[
'tag_referrer'
]]:
row
[
'tag_id'
]
=
int
(
search_tag
)
user_df_service
=
user_df_service
.
append
(
row
,
ignore_index
=
True
)
break
# 增加df字段(days_diff_now, tag_type, tag2)
if
not
user_df_service
.
empty
:
user_df_service
[
"days_diff_now"
]
=
round
((
int
(
time
.
time
())
-
user_df_service
[
"time"
]
.
astype
(
float
))
/
(
24
*
60
*
60
))
user_df_service
[
"tag_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag_id"
]),
axis
=
1
)
user_df_service
=
user_df_service
[
user_df_service
[
'tag_type'
]
.
isin
([
'2'
,
'3'
])]
user_log_df_tag2_list
=
user_df_service
[
user_df_service
[
'tag_type'
]
==
'2'
][
'tag_id'
]
.
unique
()
.
tolist
()
user_df_service
[
"tag2"
]
=
user_df_service
.
apply
(
lambda
x
:
get_tag2_from_tag3
(
x
.
tag_id
,
all_3tag_2tag
,
user_log_df_tag2_list
)
if
x
.
tag_type
==
'3'
else
x
.
tag_id
,
axis
=
1
)
user_df_service
[
"tag2_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag2"
]),
axis
=
1
)
# 算分及比例
user_df_service
[
"tag_score"
]
=
user_df_service
.
apply
(
lambda
x
:
compute_henqiang
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"henqiang"
else
(
compute_jiaoqiang
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"jiaoqiang"
else
(
compute_ai_scan
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ai_scan"
else
(
compute_ruoyixiang
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ruoyixiang"
else
compute_validate
(
x
.
days_diff_now
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)))),
axis
=
1
)
tag_score_sum
=
user_df_service
.
groupby
(
by
=
[
"tag2"
,
"tag2_type"
])
.
agg
(
{
'tag_score'
:
'sum'
,
'cl_id'
:
'first'
,
'action'
:
'first'
})
.
reset_index
()
.
sort_values
(
by
=
[
"tag_score"
],
ascending
=
False
)
tag_score_sum
[
'weight'
]
=
100
*
tag_score_sum
[
'tag_score'
]
/
tag_score_sum
[
'tag_score'
]
.
sum
()
tag_score_sum
[
"pay_type"
]
=
tag_score_sum
.
apply
(
lambda
x
:
3
if
x
.
action
==
"api/order/validate"
else
(
2
if
x
.
action
==
"api/settlement/alipay_callback"
else
1
),
axis
=
1
)
gmkv_tag_score_sum
=
tag_score_sum
[[
"tag2"
,
"tag_score"
,
"weight"
]][:
size
]
.
to_dict
(
'record'
)
# 写gmkv
gm_kv_cli
=
redis
.
Redis
(
host
=
"172.16.40.135"
,
port
=
5379
,
db
=
2
,
socket_timeout
=
2000
)
cl_id_portrait_key
=
"user:service_portrait_tags:cl_id:"
+
str
(
cl_id
)
tag_id_list_json
=
json
.
dumps
(
gmkv_tag_score_sum
)
gm_kv_cli
.
set
(
cl_id_portrait_key
,
tag_id_list_json
)
gm_kv_cli
.
expire
(
cl_id_portrait_key
,
time
=
30
*
24
*
60
*
60
)
# 写tidb,redis同步
stat_date
=
datetime
.
datetime
.
today
()
.
strftime
(
'
%
Y-
%
m-
%
d'
)
replace_sql
=
"""replace into user_service_portrait_tags (stat_date, cl_id, tag_list) values("{stat_date}","{cl_id}","{tag_list}")"""
\
.
format
(
stat_date
=
stat_date
,
cl_id
=
cl_id
,
tag_list
=
gmkv_tag_score_sum
)
cur_jerry_test
.
execute
(
replace_sql
)
db_jerry_test
.
commit
()
# 写tidb 用户分层营销
score_result
=
tag_score_sum
[[
"tag2"
,
"cl_id"
,
"tag_score"
,
"weight"
,
"pay_type"
]]
score_result
.
rename
(
columns
=
{
"tag2"
:
"tag_id"
,
"cl_id"
:
"device_id"
,
"tag_score"
:
"score"
},
inplace
=
True
)
delete_sql
=
"delete from api_market_personas where device_id='{}'"
.
format
(
cl_id
)
cur_jerry_test
.
execute
(
delete_sql
)
db_jerry_test
.
commit
()
for
index
,
row
in
score_result
.
iterrows
():
insert_sql
=
"insert into api_market_personas values (null, {}, '{}', {}, {}, {})"
.
format
(
row
[
'tag_id'
],
row
[
'device_id'
],
row
[
'score'
],
row
[
'weight'
],
row
[
'pay_type'
])
cur_jerry_test
.
execute
(
insert_sql
)
db_jerry_test
.
commit
()
db_jerry_test
.
close
()
return
"sucess"
except
Exception
as
e
:
print
(
e
)
if
__name__
==
'__main__'
:
try
:
db_jerry_test
=
pymysql
.
connect
(
host
=
'172.16.40.170'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
,
charset
=
'utf8'
)
cur_jerry_test
=
db_jerry_test
.
cursor
()
# 获取最近30天内的用户设备id
sql_device_ids
=
"select distinct cl_id from user_new_tag_log "
\
"where time > UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 30 day))"
cur_jerry_test
.
execute
(
sql_device_ids
)
device_ids_lst
=
[
i
[
0
]
for
i
in
cur_jerry_test
.
fetchall
()]
db_jerry_test
.
close
()
# 获取搜索词及其近义词对应的tag
all_word_tags
=
get_all_word_tags
()
all_tag_tag_type
=
get_all_tag_tag_type
()
# 3级tag对应的2级tag
all_3tag_2tag
=
get_all_3tag_2tag
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment