Commit ac646a7d authored by 王志伟's avatar 王志伟

数据指标波动假设检验统计

parent d18eca7d
......@@ -192,7 +192,6 @@ def chi_cal(data):
data['共计'] = data.apply(lambda x: x.sum(), axis=1)
# print(data)
data.loc['共计'] = data.apply(lambda x: x.sum())
print(data)
t1=data.iloc[0]
t2=data.iloc[1]
t11_count=t1[0]
......@@ -221,7 +220,7 @@ def chi_cal(data):
print("数据波动较小,95%可能性属于正常波动范围")
#老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("(精准曝光)首页精选日记本列表老用户ctr数据波动假设检验结果:")
print("【1】(精准曝光)首页精选日记本列表老用户ctr数据波动假设检验结果:")
chi_ctr_precise_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1=[float(str(Decimal(chi_ctr_precise_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_recently))]
# print(temp1)
......@@ -232,7 +231,7 @@ tst=data_cal(temp1,temp2)
chi_cal(tst)
#新用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("(精准曝光)首页精选日记本列表新用户ctr数据波动假设检验结果:")
print("【2】(精准曝光)首页精选日记本列表新用户ctr数据波动假设检验结果:")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment