Commit d18eca7d authored by 王志伟's avatar 王志伟

数据指标波动假设检验统计

parent c87edd7b
...@@ -196,30 +196,19 @@ def chi_cal(data): ...@@ -196,30 +196,19 @@ def chi_cal(data):
t1=data.iloc[0] t1=data.iloc[0]
t2=data.iloc[1] t2=data.iloc[1]
t11_count=t1[0] t11_count=t1[0]
print("t11:{}".format(t11_count))
t12_count=t1[1] t12_count=t1[1]
print("t12:{}".format(t12_count))
t21_count=t2[0] t21_count=t2[0]
print("t21:{}".format(t21_count))
t22_count=t2[1] t22_count=t2[1]
print("t22:{}".format(t22_count))
###理论值计算 ###理论值计算
temp1=data['共计'] temp1=data['共计']
print("共计:{}".format(temp1))
rate1=temp1[0]/temp1[2] rate1=temp1[0]/temp1[2]
print("rate1:{}".format(rate1))
rate2=temp1[1]/temp1[2] rate2=temp1[1]/temp1[2]
print("rate2:{}".format(rate2))
temp2=data.iloc[2] temp2=data.iloc[2]
t11_theory=temp2[0]*rate1 t11_theory=temp2[0]*rate1
print("t11_theory:{}".format(t11_theory))
t12_theory=temp2[1]*rate1 t12_theory=temp2[1]*rate1
print("t12_theory:{}".format(t12_theory))
t21_theory = temp2[0]*rate2 t21_theory = temp2[0]*rate2
print("t21_theory:{}".format(t21_theory))
t22_theory = temp2[1]*rate2 t22_theory = temp2[1]*rate2
print("t22_theory:{}".format(t22_theory))
#计算卡方值 #计算卡方值
X=(((t11_count-t11_theory)**2)/t11_theory)+(((t12_count-t12_theory)**2)/t12_theory)+(((t21_count-t21_theory)**2)/t21_theory)+(((t22_count-t22_theory)**2)/t22_theory) X=(((t11_count-t11_theory)**2)/t11_theory)+(((t12_count-t12_theory)**2)/t12_theory)+(((t21_count-t21_theory)**2)/t21_theory)+(((t22_count-t22_theory)**2)/t22_theory)
print("卡方值为:{}".format(X)) print("卡方值为:{}".format(X))
...@@ -231,7 +220,8 @@ def chi_cal(data): ...@@ -231,7 +220,8 @@ def chi_cal(data):
else: else:
print("数据波动较小,95%可能性属于正常波动范围") print("数据波动较小,95%可能性属于正常波动范围")
#精准点击曝光数据(首页精选日记本列表on_click_diary_card) #老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("(精准曝光)首页精选日记本列表老用户ctr数据波动假设检验结果:")
chi_ctr_precise_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday) chi_ctr_precise_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1=[float(str(Decimal(chi_ctr_precise_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_recently))] temp1=[float(str(Decimal(chi_ctr_precise_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_recently))]
# print(temp1) # print(temp1)
...@@ -239,9 +229,12 @@ chi_ctr_precise_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_coun ...@@ -239,9 +229,12 @@ chi_ctr_precise_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_coun
temp2=[float(chi_ctr_precise_yesterday[i]) for i in range(len(chi_ctr_precise_yesterday))] temp2=[float(chi_ctr_precise_yesterday[i]) for i in range(len(chi_ctr_precise_yesterday))]
# print(temp2) # print(temp2)
tst=data_cal(temp1,temp2) tst=data_cal(temp1,temp2)
print(tst)
chi_cal(tst) chi_cal(tst)
#新用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("(精准曝光)首页精选日记本列表新用户ctr数据波动假设检验结果:")
# print(chi_ctr_precise_recently) # print(chi_ctr_precise_recently)
# print(chi_ctr_precise_yesterday) # print(chi_ctr_precise_yesterday)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment