Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
b6db7e79
Commit
b6db7e79
authored
Mar 25, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
预测集增加应用列表特征
parent
70a6c04c
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
4 additions
and
4 deletions
+4
-4
pipeline.sh
tensnsorflow/es/pipeline.sh
+3
-3
train.py
tensnsorflow/es/train.py
+1
-1
No files found.
tensnsorflow/es/pipeline.sh
View file @
b6db7e79
...
...
@@ -32,15 +32,15 @@ rm ${DATA_PATH}/nearby/nearby_*
echo
"train..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
2
--feature_size
=
200000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
--task_type
=
train
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
1
--feature_size
=
200000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
--task_type
=
train
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
2
--feature_size
=
200000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
1
--feature_size
=
200000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
2
--feature_size
=
200000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
1
--feature_size
=
200000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
echo
"sort and 2sql"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_database.py
tensnsorflow/es/train.py
View file @
b6db7e79
...
...
@@ -112,7 +112,7 @@ def model_fn(features, labels, mode, params):
app_id
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
app_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
tf
.
reshape
(
app_id
,
shape
=
[
-
1
,
common_dims
])
],
axis
=
1
)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
app_id
],
axis
=
1
)
with
tf
.
name_scope
(
"CVR_Task"
):
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment