Commit b7a1945c authored by 王志伟's avatar 王志伟
parents df15cfdd fa28e054
......@@ -54,14 +54,20 @@ def get_data():
6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "device_id",
11: "time",12:"app_list",13:"service_id",14:"level3_ids"})
print("esmm data ok")
print(df.shape)
# print(df.head(2)
print(df.head(2))
service_id = tuple(df["service_id"].unique())
db = pymysql.connect(host='rdsfewzdmf0jfjp9un8xj.mysql.rds.aliyuncs.com', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
sql = "select s.id,d.hospital_id from api_service s left join api_doctor d on s.doctor_id = d.id where s.id in {}".format(service_id)
db = pymysql.connect(host='rdsfewzdmf0jfjp9un8xj.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
sql = "select s.id,d.hospital_id from api_service s left join api_doctor d on s.doctor_id = d.id " \
"where s.id in {}".format(service_id)
hospital = con_sql(db, sql)
hospital = hospital.rename(columns={0: "service_id", 1: "hospital_id"})
print(hospital.head())
df = pd.merge(df, hospital, on='service_id', how='left')
df = df.drop("service_id", axis=1)
print(df.head())
print("before")
print(df.shape)
......@@ -70,9 +76,9 @@ def get_data():
df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date","app_list","hospital_id","level3_ids"])
app_list_number,app_list_map = multi_hot(df,"app_list",1)
level2_number,level2_map = multi_hot(df,"clevel2_id",1+app_list_number)
level3_number,level3_ids = multi_hot(df, "hospital_id", 1 + app_list_number + level2_number)
app_list_number,app_list_map = multi_hot(df,"app_list",2)
level2_number,level2_map = multi_hot(df,"clevel2_id",2+app_list_number)
level3_number,level3_map = multi_hot(df, "level3_ids", 2 + app_list_number + level2_number)
unique_values = []
features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
......@@ -84,7 +90,7 @@ def get_data():
df[i] = df[i] + i
unique_values.extend(list(df[i].unique()))
temp = list(range(1+app_list_number+level2_number + level3_number, 1 + app_list_number+level2_number + level3_number + len(unique_values)))
temp = list(range(2+app_list_number+level2_number + level3_number, 2 + app_list_number+level2_number + level3_number + len(unique_values)))
value_map = dict(zip(unique_values,temp))
df = df.drop("device_id", axis=1)
......@@ -103,7 +109,7 @@ def get_data():
write_csv(train, "tr",100000)
write_csv(test, "va",80000)
return validate_date,value_map,app_list_map,level2_map
return validate_date,value_map,app_list_map,level2_map,level3_map
def app_list_func(x,l):
......@@ -128,10 +134,11 @@ def write_csv(df,name,n):
temp.to_csv(path + name+ "/{}_{}.csv".format(name,i), index=False)
def get_predict(date,value_map,app_list_map,level2_map):
def get_predict(date,value_map,app_list_map,level2_map,level3_map):
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name," \
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,dl.app_list " \
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time," \
"dl.app_list,e.hospital_id,feat.level3_ids " \
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id " \
"left join cid_type_top c on e.device_id = c.device_id " \
"left join cid_time_cut cut on e.cid_id = cut.cid " \
......@@ -139,8 +146,8 @@ def get_predict(date,value_map,app_list_map,level2_map):
"left join diary_feat feat on e.cid_id = feat.diary_id"
df = con_sql(db, sql)
df = df.rename(columns={0: "y", 1: "z", 2: "label", 3: "ucity_id", 4: "clevel2_id", 5: "ccity_name",
6: "device_type", 7: "manufacturer", 8: "channel", 9: "top",
10: "device_id", 11: "cid_id", 12: "time",13:"app_list"})
6: "device_type", 7: "manufacturer", 8: "channel", 9: "top",10: "device_id",
11: "cid_id", 12: "time",13:"app_list",14:"hospital_id",15:"level3_ids"})
df["stat_date"] = date
print(df.head(6))
......@@ -148,13 +155,15 @@ def get_predict(date,value_map,app_list_map,level2_map):
df["app_list"] = df["app_list"].apply(app_list_func,args=(app_list_map,))
df["clevel2_id"] = df["clevel2_id"].fillna("lost_na")
df["clevel2_id"] = df["clevel2_id"].apply(app_list_func, args=(level2_map,))
df["level3_ids"] = df["level3_ids"].fillna("lost_na")
df["level3_ids"] = df["level3_ids"].apply(app_list_func, args=(level3_map,))
# print("predict shape")
# print(df.shape)
df["uid"] = df["device_id"]
df["city"] = df["ucity_id"]
features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date"]
"channel", "top", "time", "stat_date","hospital_id"]
for i in features:
df[i] = df[i].astype("str")
df[i] = df[i].fillna("lost")
......@@ -166,7 +175,7 @@ def get_predict(date,value_map,app_list_map,level2_map):
nearby_pre = nearby_pre.drop("label", axis=1)
for i in ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date"]:
"channel", "top", "time", "stat_date","hospital_id"]:
native_pre[i] = native_pre[i].map(value_map)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
native_pre[i] = native_pre[i].fillna(0)
......@@ -175,7 +184,6 @@ def get_predict(date,value_map,app_list_map,level2_map):
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
nearby_pre[i] = nearby_pre[i].fillna(0)
print("native")
print(native_pre.shape)
......@@ -192,6 +200,6 @@ def get_predict(date,value_map,app_list_map,level2_map):
if __name__ == '__main__':
train_data_set = "esmm_train_data"
path = "/data/esmm/"
date,value,app_list,level2 = get_data()
# get_predict(date, value,app_list,level2)
date,value,app_list,level2,level3 = get_data()
get_predict(date, value,app_list,level2,level3)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment