Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
bb5a2b94
Commit
bb5a2b94
authored
Feb 20, 2020
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add
parent
66592d26
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
55 additions
and
39 deletions
+55
-39
make_data.py
make_data.py
+55
-39
No files found.
make_data.py
View file @
bb5a2b94
...
...
@@ -121,53 +121,69 @@ def hospital():
date_str
=
(
datetime
.
datetime
.
now
()
-
datetime
.
timedelta
(
days
=
1
))
.
strftime
(
"
%
Y
%
m
%
d"
)
date_tmp
=
(
datetime
.
datetime
.
now
()
-
datetime
.
timedelta
(
days
=
1
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
sql
=
"select h.hospital_id,h.hospital_exposure_pv_30,h.service_exposure_pv_30,"
\
"h.expert_exposure_pv_30,h.service_ctr_30,h.hospital_ctr_30,h.expert_ctr_30"
\
"api.id,b.merchant_id,"
\
"m.doctor_ad_money_30_days,m.expand_rechange_amount_30,m.service_pv_30,m.expert_pv_30,m.organization_pv_30,"
\
"budan.budan_payment_30_days "
\
"from statistic_hospital_rank_factor h left join api_doctor api on h.hospital_id = api.hospital_id "
\
"left join hippo_merchantrelevance b on api.id = b.doctor_id "
\
"left join statistic_merchant_rank_factor m on b.merchant_id = m.merchant_id "
\
"left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id "
\
"where h.partition_date = '{}' and m.partition_date = '{}' "
\
"and budan.stat_date = '{}';"
.
format
(
date_str
,
date_str
,
date_tmp
)
sql
=
"select api.id,"
\
"h.hospital_id,h.hospital_exposure_pv_30,h.service_exposure_pv_30,h.expert_exposure_pv_30,"
\
"h.service_ctr_30,h.hospital_ctr_30,h.expert_ctr_30,"
\
"b.merchant_id,budan.budan_payment_30_days "
\
"from api_doctor api left join statistic_hospital_rank_factor h on api.hospital_id = h.hospital_id "
\
"left join hippo_merchantrelevance b on api.id = b.doctor_id "
\
"left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id "
\
"where api.doctor_type = 1 and h.partition_date = '{}' "
\
"and budan.stat_date = '{}' limit 6;"
.
format
(
date_str
,
date_tmp
)
db
=
pymysql
.
connect
(
host
=
'172.16.30.143'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'BJQaT9VzDcuPBqkd'
,
db
=
'zhengxing'
)
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
name
=
[
"doctor_id"
,
"hospital_id"
,
"hospital_exposure_pv_30"
,
"service_exposure_pv_30"
,
"expert_exposure_pv_30"
,
"service_ctr_30"
,
"hospital_ctr_30"
,
"expert_ctr_30"
,
"merchant_id"
,
"budan_payment_30_days"
]
name
=
[
"hospital_id"
,
"hospital_exposure_pv_30"
,
"service_exposure_pv_30"
\
"h.expert_exposure_pv_30,h.service_ctr_30,h.hospital_ctr_30,h.expert_ctr_30"
,
"id"
,
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]
df
=
df
.
rename
(
columns
=
dict
(
zip
(
list
(
range
(
len
(
name
))),
name
)))
for
i
in
[
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]:
df
[
i
]
=
df
[
i
]
.
astype
(
"float"
)
df
[
"all_exposure"
]
=
df
[
"service_exposure_pv_30"
]
+
df
[
"expert_exposure_pv_30"
]
df
=
df
[
~
df
[
"expert_exposure_pv_30"
]
.
isin
([
0.0
])]
df
=
df
[
~
df
[
"all_exposure"
]
.
isin
([
0.0
])]
df
[
"tmp"
]
=
df
[
"service_pv_30"
]
+
df
[
"mexpert_pv_30"
]
+
df
[
"organization_pv_30"
]
df
=
df
[
~
df
[
"tmp"
]
.
isin
([
0.0
])]
df
=
df
.
rename
(
columns
=
dict
(
zip
(
list
(
range
(
len
(
name
))),
name
)))
df
[
"ctr"
]
=
df
[
"service_exposure_pv_30"
]
/
df
[
"all_exposure"
]
*
df
[
"service_ctr_30"
]
+
\
df
[
"expert_exposure_pv_30"
]
/
df
[
"all_exposure"
]
*
(
df
[
"expert_pv_30"
]
/
df
[
"expert_exposure_pv_30"
])
df
[
"commission"
]
=
(
df
[
"doctor_ad_money_30_days"
]
+
df
[
"budan_payment_30_days"
])
/
df
[
"tmp"
]
df
[
"pv_ad"
]
=
df
[
"expand_rechange_amount_30"
]
/
df
[
"tmp"
]
df
[
"score"
]
=
df
[
"ctr"
]
**
0.5
*
(
df
[
"commission"
]
+
df
[
"pv_ad"
])
columns
=
[
"score"
,
"ctr"
,
"commission"
,
"pv_ad"
,
"service_exposure_pv_30"
,
"service_ctr_30"
,
"expert_exposure_pv_30"
,
"expert_pv_30"
,
"merchant_id"
,
"doctor_ad_money_30_days"
,
"expand_rechange_amount_30"
,
"service_pv_30"
,
"mexpert_pv_30"
,
"organization_pv_30"
,
"budan_payment_30_days"
]
data
=
df
.
loc
[:,
columns
]
# print(data)
data
.
to_csv
(
'/home/gmuser/doctor.csv'
,
index
=
False
)
print
(
df
.
head
(
6
))
# sql = "select merchant_id,doctor_ad_money_30_days,expand_rechange_amount_30," \
# "service_pv_30,expert_pv_30,organization_pv_30 from statistic_merchant_rank_factor " \
# "where partition_date = '{}';".format(date_str)
#
# cursor = db.cursor()
# cursor.execute(sql)
# result = cursor.fetchall()
# db.close()
# tmp = pd.DataFrame(list(result))
# name = ["merchant_id", "doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30"]
# tmp = tmp.rename(columns=dict(zip(list(range(len(name))), name)))
#
# df["merchant_id"] = df["merchant_id"].astype("str")
# tmp["merchant_id"] = tmp["merchant_id"].astype("str")
# df = pd.merge(df, tmp, on='merchant_id')
#
# for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
# "doctor_ad_money_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30", "budan_payment_30_days"]:
# df[i] = df[i].astype("float")
#
# df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
# df = df[~df["expert_exposure_pv_30"].isin([0.0])]
# df = df[~df["all_exposure"].isin([0.0])]
# df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
# df = df[~df["tmp"].isin([0.0])]
# print("aaaaaaaa")
# df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
# df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"])
# df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
# df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
# df["score"] = df["ctr"]**0.5 * (df["commission"] + df["pv_ad"])
# columns = ["score","ctr","commission","pv_ad","service_exposure_pv_30","service_ctr_30","expert_exposure_pv_30","expert_pv_30",
# "merchant_id","doctor_ad_money_30_days","expand_rechange_amount_30","service_pv_30",
# "mexpert_pv_30","organization_pv_30","budan_payment_30_days"]
# data = df.loc[:, columns]
# print(data.head(6))
# data.to_csv('/home/gmuser/doctor.csv',index=False)
if
__name__
==
"__main__"
:
v1_doctor
()
hospital
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment