Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
befbf04c
Commit
befbf04c
authored
5 years ago
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test fil
parent
473d6c3f
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
22 deletions
+19
-22
feature_engineering.py
eda/esmm/Model_pipline/feature_engineering.py
+19
-22
No files found.
eda/esmm/Model_pipline/feature_engineering.py
View file @
befbf04c
...
@@ -104,15 +104,15 @@ def feature_engineer():
...
@@ -104,15 +104,15 @@ def feature_engineer():
unique_values
=
[]
unique_values
=
[]
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct stat_date from esmm_train_data_
share
"
sql
=
"select distinct stat_date from esmm_train_data_
dwell
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ucity_id from esmm_train_data_
share
"
sql
=
"select distinct ucity_id from esmm_train_data_
dwell
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ccity_name from esmm_train_data_
share
"
sql
=
"select distinct ccity_name from esmm_train_data_
dwell
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
...
@@ -162,16 +162,15 @@ def feature_engineer():
...
@@ -162,16 +162,15 @@ def feature_engineer():
# unique_values.append("video")
# unique_values.append("video")
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data_
share
"
sql
=
"select max(stat_date) from esmm_train_data_
dwell
"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
180
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
180
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
print
(
start
)
print
(
"这是分享数据"
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
sql
=
"select distinct doctor.hospital_id from jerry_test.esmm_train_data_
share
e "
\
sql
=
"select distinct doctor.hospital_id from jerry_test.esmm_train_data_
dwell
e "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
"where e.stat_date >= '{}'"
.
format
(
start
)
...
@@ -191,13 +190,13 @@ def feature_engineer():
...
@@ -191,13 +190,13 @@ def feature_engineer():
29
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
29
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
sql
=
"select e.y,e.z,e.s
,e.s
tat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
"e.device_id,e.cid_id "
\
"e.device_id,e.cid_id "
\
"from jerry_test.esmm_train_data_
share
e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"from jerry_test.esmm_train_data_
dwell
e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
...
@@ -227,7 +226,7 @@ def feature_engineer():
...
@@ -227,7 +226,7 @@ def feature_engineer():
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
,
"s"
)
\
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
...
@@ -238,37 +237,40 @@ def feature_engineer():
...
@@ -238,37 +237,40 @@ def feature_engineer():
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)],
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)],
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
),
x
[
13
],
x
[
29
],
x
[
30
]
,
float
(
x
[
31
])
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
),
x
[
13
],
x
[
29
],
x
[
30
]
))
))
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
print
(
"最近一天的数据没有加到训练集里"
)
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
.
map
(
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]
,
x
[
19
]
))
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]))
f
=
time
.
time
()
f
=
time
.
time
()
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
,
"s"
)
\
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
h
=
time
.
time
()
h
=
time
.
time
()
print
(
"train tfrecord done"
)
print
(
"train tfrecord done"
)
print
((
h
-
f
)
/
60
)
print
((
h
-
f
)
/
60
)
print
(
"训练集样本总量:"
)
print
(
rdd
.
count
())
get_pre_number
()
get_pre_number
()
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]
,
x
[
19
]
))
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
,
"s"
)
\
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
print
(
"va tfrecord done"
)
...
@@ -386,10 +388,4 @@ if __name__ == '__main__':
...
@@ -386,10 +388,4 @@ if __name__ == '__main__':
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
# get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
# get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
spark
.
stop
()
spark
.
stop
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment