Commit c4fa88d5 authored by 张彦钊's avatar 张彦钊

update dairyQueueUpdate file

parent 4cecec77
This diff is collapsed.
......@@ -172,7 +172,7 @@ def update_dairy_queue(score_df,predict_score_df):
return score_df.index.tolist()
def update_sql_dairy_queue(queue_name, diary_id,device_city):
def update_sql_dairy_queue(queue_name, diary_id,device_id, city_id):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='doris_test')
cursor = db.cursor()
......@@ -182,7 +182,7 @@ def update_sql_dairy_queue(queue_name, diary_id,device_city):
print("写入前")
print(id_str[:80])
sql = "update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
(queue_name,id_str,device_city[0],device_city[1])
(queue_name,id_str,device_id, city_id)
cursor.execute(sql)
db.commit()
db.close()
......@@ -211,10 +211,10 @@ def get_native_queue(device_id,city_id):
def multi_update(queue_name,queue_arg,device_id,city_id):
if queue_arg[0] != []:
diary_id = predict(queue_name,queue_arg,device_id,city_id)
update_sql_dairy_queue(queue_name, diary_id,device_id,city_id)
print("更新结束")
return diary_id
else:
print("预测集是空,不需要预测")
return False
def get_queue(device_id, city_id,queue_name):
......@@ -227,35 +227,33 @@ def get_queue(device_id, city_id,queue_name):
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
if not df.empty:
queue_list = df.loc[0,0].split(",")
queue_list = list(map(lambda x: "diary|" + str(x), queue_list))
db.close()
return True, queue_list
return queue_list
else:
print("该用户对应的日记队列为空")
return False, []
return False
def user_update(device_id,city_id):
global native_queue_list
queue_name_list = ["native_queue","nearby_queue","nation_queue","megacity_queue"]
for queue_name in queue_name_list:
exist,queue_list = get_queue(device_id, city_id,queue_name)
# 下面的代码是用来对比native_queue是否发生变化,如果发生了变化,就不更新日记队列了
# if queue_name == "native_queue":
# native_queue_list =
if exist:
queue_predcit = list(set(queue_list) & set(data_set_cid))
queue_not_predcit = list(set(queue_list) - set(data_set_cid))
queue_arg = [queue_predcit,queue_not_predcit,queue_list]
multi_update(queue_name,queue_arg,device_id,city_id)
queue_list = get_queue(device_id, city_id,queue_name)
if queue_name == "native_queue":
native_queue_list = queue_list
if queue_list:
queue_predict = list(set(queue_list) & set(data_set_cid))
queue_not_predict = list(set(queue_list) - set(data_set_cid))
queue_arg = [queue_predict,queue_not_predict,queue_list]
diary_id = multi_update(queue_name, queue_arg, device_id, city_id)
if diary_id and (native_queue_list == get_native_queue(device_id,city_id)):
update_sql_dairy_queue(queue_name, diary_id, device_id, city_id)
print("更新结束")
else:
print("不需要更新日记队列")
else:
print("日记队列为空")
......
from utils import con_sql
from datetime import datetime
from config import *
import pandas as pd
import os
import time
# 获取当下一分钟内活跃用户
......@@ -7,19 +11,40 @@ def get_active_users():
now = datetime.now()
now_start = str(now)[:16] + ":00"
now_end = str(now)[:16] + ":59"
没有city_id的是“” 这个值可能是空
sql = "select device_id from user_active_time order by active_time desc limit 1;"
# sql = "select device_id from user_active_time " \
sql = "select device_id,city_id from user_active_time limit 1;"
# TODO 正式上线后用下面的sql语句
# sql = "select device_id,city_id from user_active_time " \
# "where active_time <= '{}' and active_time >= '{}'".format(now_end,now_start)
device_id_df = con_sql(sql)
if device_id_df.empty:
df = con_sql(sql)
if df.empty:
print("当下这一分钟没有活跃用户,不需要预测")
return True,None
for eachFile in os.listdir("/tmp"):
if "xlearn" in eachFile:
os.remove("/tmp" + "/" + eachFile)
time.sleep(58)
return False
else:
device_id_list = device_id_df[0].values.tolist()
# 对device_id 进行去重
device_id_list = list(set(device_id_list))
return False,device_id_list
df = df.rename(columns={0: "device_id", 1: "city_id"})
old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
# 求活跃用户和老用户的交集,也就是只预测老用户
df = df.loc[df["device_id"].isin(old_device_id_list)]
if df.empty:
print("该列表是新用户,不需要预测")
else:
# TODO 正式上线后注释下面的只预测尾号是6的代码
# 只预测尾号是6的ID,这块是测试要求的,这块也可以在数据库取数据时过滤一下
device_temp_list = df["device_id"].values.tolist()
predict_list = list(filter(lambda x: str(x)[-1] == "6", device_temp_list))
df = df.loc[df["device_id"].isin(predict_list)]
if df.empty:
print("没有尾号是6的用户,不需要预测")
else:
device_list = df["device_id"].values.tolist()
city_list = df["city_id"].values.tolist()
device_city_list = list(zip(device_list, city_list))
return device_city_list
def fetch_user_profile(device_id):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment