Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
c51d4fe8
Commit
c51d4fe8
authored
Aug 07, 2018
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refractor the process data file
parent
61438b13
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
30 additions
and
63 deletions
+30
-63
aucCaculate.py
aucCaculate.py
+3
-4
config.py
config.py
+4
-0
diaryTraining.py
diaryTraining.py
+2
-11
rocCurve.py
eda/ml_tools/rocCurve.py
+3
-30
processData.py
processData.py
+18
-18
No files found.
aucCaculate.py
View file @
c51d4fe8
...
...
@@ -2,9 +2,8 @@ from eda.ml_tools.rocCurve import get_roc_curve
import
pandas
as
pd
from
config
import
*
if
__name__
==
"__main__"
:
test
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"test.csv"
,
header
=
None
)
test
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"test.csv"
,
header
=
None
)
test_label
=
test
[
0
]
.
apply
(
lambda
x
:
x
[
0
])
.
values
predict
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"output.txt"
,
header
=
None
)[
0
]
.
values
get_roc_curve
(
test_label
,
predict
)
predict
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"output.txt"
,
header
=
None
)[
0
]
.
values
get_roc_curve
(
test_label
,
predict
,
"1"
)
config.py
View file @
c51d4fe8
DIRECTORY_PATH
=
'/home/zhangyanzhao/'
VALIDATION_DATE
=
'2018-08-05'
TEST_DATE
=
'2018-08-06'
DATA_START_DATE
=
'2018-07-06'
DATA_END_DATE
=
'2018-08-06'
# processData.py
...
...
diaryTraining.py
View file @
c51d4fe8
import
xlearn
as
xl
from
config
import
*
print
(
"Start training"
)
ffm_model
=
xl
.
create_ffm
()
ffm_model
.
setTrain
(
DIRECTORY_PATH
+
"
data
.csv"
)
ffm_model
.
setTrain
(
DIRECTORY_PATH
+
"
train
.csv"
)
ffm_model
.
setValidate
(
DIRECTORY_PATH
+
"validation.csv"
)
param
=
{
'task'
:
'binary'
,
'lr'
:
0.03
,
'lambda'
:
0.002
,
'metric'
:
'auc'
}
param
=
{
'task'
:
'binary'
,
'lr'
:
0.03
,
'lambda'
:
0.002
,
'metric'
:
'auc'
}
ffm_model
.
fit
(
param
,
DIRECTORY_PATH
+
"model.out"
)
...
...
@@ -19,8 +15,3 @@ ffm_model.setTest(DIRECTORY_PATH + "test.csv")
ffm_model
.
setSigmoid
()
ffm_model
.
predict
(
DIRECTORY_PATH
+
"model.out"
,
DIRECTORY_PATH
+
"output.txt"
)
eda/ml_tools/rocCurve.py
View file @
c51d4fe8
import
pandas
as
pd
from
sklearn
import
metrics
# import matplotlib.pyplot as plt
from
sklearn.metrics
import
auc
# import argparse
# parser = argparse.ArgumentParser()
# parser.add_argument('test_label',help='The filename of the test_label')
# parser.add_argument('test_pred',help='The filename of the test_pred')
# # parser.add_argument('output_photo',help='The filename of the output_photo')
# args = parser.parse_args()
def
get_roc_curve
(
label
,
pred
):
def
get_roc_curve
(
y
,
pred
,
pos_label
):
"""
计算二分类问题的roc和auc
"""
test_label
=
pd
.
read_table
(
label
)
pred_label
=
pd
.
read_table
(
pred
)
y
=
test_label
.
values
p
=
pred_label
.
values
fpr
,
tpr
,
thresholds
=
metrics
.
roc_curve
(
y
,
p
)
# plt.plot(fpr,tpr,marker = 'o')
# plt.xlabel('False positive rate')
# plt.ylabel('True positive rate')
# plt.title("roc_curev")
AUC
=
auc
(
fpr
,
tpr
)
AUC
=
"auc={}"
.
format
(
AUC
)
# plt.text(0.5,0.8,AUC,color='blue',ha='center')
# # plt.savefig(output)
fpr
,
tpr
,
thresholds
=
metrics
.
roc_curve
(
y
,
pred
,
pos_label
)
AUC
=
metrics
.
auc
(
fpr
,
tpr
)
print
(
AUC
)
#
# if __name__ == "__main__":
# get_roc_curve(args.test_label,args.test_pred)
processData.py
View file @
c51d4fe8
...
...
@@ -5,7 +5,7 @@ import pandas as pd
from
config
import
*
exposure
,
click
,
click_device_id
=
fetch_data
(
start_date
=
'2018-08-03'
,
end_date
=
'2018-08-06'
)
start_date
=
DATA_START_DATE
,
end_date
=
DATA_END_DATE
)
# 求曝光表和点击表的差集合
print
(
"曝光表处理前的样本个数"
)
...
...
@@ -14,7 +14,7 @@ print(exposure.shape)
exposure
=
exposure
.
append
(
click
)
exposure
=
exposure
.
append
(
click
)
subset
=
click
.
columns
.
tolist
()
exposure
=
exposure
.
drop_duplicates
(
subset
=
subset
,
keep
=
False
)
exposure
=
exposure
.
drop_duplicates
(
subset
=
subset
,
keep
=
False
)
print
(
"差集后曝光表个数"
)
print
(
exposure
.
shape
)
...
...
@@ -33,23 +33,22 @@ print(exposure.shape[0])
# 合并点击表和曝光表
data
=
click
.
append
(
exposure
)
data
=
data
.
sort_values
(
by
=
"stat_date"
,
ascending
=
False
)
data
=
data
.
sort_values
(
by
=
"stat_date"
,
ascending
=
False
)
print
(
"前两行数据"
)
print
(
data
.
head
(
2
))
print
(
"后两行数据"
)
print
(
data
.
tail
(
2
))
test_number
=
data
[
data
[
"stat_date"
]
==
'2018-08-06'
]
.
shape
[
0
]
validation_number
=
data
[
data
[
"stat_date"
]
==
'2018-08-05'
]
.
shape
[
0
]
data
=
data
.
drop
(
"stat_date"
,
axis
=
1
)
test_number
=
data
[
data
[
"stat_date"
]
==
TEST_DATE
]
.
shape
[
0
]
validation_number
=
data
[
data
[
"stat_date"
]
==
VALIDATION_DATE
]
.
shape
[
0
]
data
=
data
.
drop
(
"stat_date"
,
axis
=
1
)
# 数值是0的特征会被ffm格式删除,经过下面的处理后,没有数值是0的特征
data
.
loc
[
data
[
"hour"
]
==
0
,
[
"hour"
]]
=
24
data
.
loc
[
data
[
"minute"
]
==
0
,
[
"minute"
]]
=
60
data
.
loc
[
data
[
"hour"
]
==
0
,
[
"hour"
]]
=
24
data
.
loc
[
data
[
"minute"
]
==
0
,
[
"minute"
]]
=
60
data
[
"hour"
]
=
data
[
"hour"
]
.
astype
(
"category"
)
data
[
"minute"
]
=
data
[
"minute"
]
.
astype
(
"category"
)
print
(
data
.
head
(
2
))
print
(
"Start ffm transform"
)
start
=
time
.
time
()
ffm_train
=
FFMFormatPandas
()
...
...
@@ -57,9 +56,10 @@ data = ffm_train.fit_transform(data, y='y')
print
(
"done transform ffm"
)
end
=
time
.
time
()
print
(
"ffm转化数据耗时:"
)
print
(
end
-
start
)
data
.
to_csv
(
DIRECTORY_PATH
+
"data.csv"
,
index
=
False
)
data
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"data.csv"
,
header
=
None
)
print
(
end
-
start
)
data
.
to_csv
(
DIRECTORY_PATH
+
"data{0}-{1}.csv"
.
format
(
DATA_START_DATE
,
DATA_END_DATE
),
index
=
False
)
data
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"data{0}-{1}.csv"
.
format
(
DATA_START_DATE
,
DATA_END_DATE
),
header
=
None
)
print
(
"数据集大小"
)
print
(
data
.
shape
)
print
(
data
.
head
(
2
))
...
...
@@ -67,13 +67,14 @@ print(data.head(2))
test
=
data
.
loc
[:
test_number
]
print
(
"测试集大小"
)
print
(
test
.
shape
[
0
])
test
.
to_csv
(
DIRECTORY_PATH
+
"test
.csv"
,
index
=
False
,
header
=
None
)
test
.
to_csv
(
DIRECTORY_PATH
+
"test
{0}.csv"
.
format
(
TEST_DATE
),
index
=
False
,
header
=
None
)
validation
=
data
.
loc
[(
test_number
+
1
):(
test_number
+
validation_number
)]
validation
=
data
.
loc
[(
test_number
+
1
):(
test_number
+
validation_number
)]
print
(
"验证集大小"
)
print
(
validation
.
shape
[
0
])
validation
.
to_csv
(
DIRECTORY_PATH
+
"validation
.csv"
,
index
=
False
,
header
=
None
)
train
=
data
.
loc
[(
test_number
+
validation_number
+
1
):]
validation
.
to_csv
(
DIRECTORY_PATH
+
"validation
{0}.csv"
.
format
(
VALIDATION_DATE
),
index
=
False
,
header
=
None
)
train
=
data
.
loc
[(
test_number
+
validation_number
+
1
):]
print
(
"训练集大小"
)
print
(
train
.
shape
[
0
])
train
.
to_csv
(
DIRECTORY_PATH
+
"train.csv"
,
index
=
False
,
header
=
None
)
\ No newline at end of file
# TODO validation date is not the end of train date
train
.
to_csv
(
DIRECTORY_PATH
+
"train{0}-{1}.csv"
.
format
(
DATA_START_DATE
,
VALIDATION_DATE
),
index
=
False
,
header
=
None
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment