Commit c88e8978 authored by 张彦钊's avatar 张彦钊

add

parent 205e815a
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import json import json
import requests import requests
# url="http://127.0.0.1:4050/v1/once"
url="http://doris.paas.test/v1/once" url="http://doris.paas.test/v1/once"
# 如果在生产环境doris 01上执行,把url改成"http://127.0.0.1:4050/v1/once"
header_dict={'Content-Type': 'application/x-www-form-urlencoded'} header_dict={'Content-Type': 'application/x-www-form-urlencoded'}
param_dict={} param_dict={}
param_dict["method"]="doris/search/skin_ai_total_content" # param_dict["method"]="doris/search/top_doctor"
a = [105, 2941, 780, 102, 873, 2060, 187, 2935, 2108, 912, 928, 2059, 4437, 822, 2866, 2778, 824, 821, 2938] #
b = [775, 2939, 789, 98, 872, 3042, 1890, 5074, 118, 811, 117, 92, 897, 152, 127, 126, 125, 123, 88, 115, 806] # param_detail = {"size":10, "offset":0, "is_officer":True,"device_id":"hello",
c = [796, 234, 233, 232, 797, 116, 236, 986, 1370, 87, 2923, 86, 85, 89, 253, 798, 810, 153, 864, 863, 151, 777, 2056] # "user_city_tag_id":328}
# [list(range(3000)),list(range(3000,6000)),list(range(6000,10000))] # param_dict["method"]="doris/search/doctor_officer"
# param_detail = {"device_id": 'xx',"size": 10,"offset":0, "query": "双眼皮","user_city_tag_id": 328,"is_officer":False}
param_detail = {
"has_order": False, param_dict["method"]="doris/search/bangdan"
"tag_list": [list(range(10000))], param_detail = {"device_id": '2',"size": 10,"offset":0, "user_city_tag_id": 328,"is_officer":True}
"in_whitelist": False,
"user_city_tag_id": 328,
"device_id": "8" # a = [105, 2941, 780, 102, 873, 2060, 187, 2935, 2108, 912, 928, 2059, 4437, 822, 2866, 2778, 824, 821, 2938]
} # b = [775, 2939, 789, 98, 872, 3042, 1890, 5074, 118, 811, 117, 92, 897, 152, 127, 126, 125, 123, 88, 115, 806]
# c = [796, 234, 233, 232, 797, 116, 236, 986, 1370, 87, 2923, 86, 85, 89, 253, 798, 810, 153, 864, 863, 151, 777, 2056]
#
# x = [list(range(3000)),list(range(3000,6000)),list(range(6000,10000))]
a = [list(range(1000)),list(range(1000,2000)),list(range(2000,3000))]
b = [list(range(3000,4000)),list(range(4000,5000)),list(range(5000,6000))]
# b = [[],[],[]]
c = [list(range(6000,7000)),list(range(7000,8000)),list(range(8000,10000))]
x = [a,b,c]
y = [list(range(0,7000)),list(range(7000,8000)),list(range(8000,10000))]
# param_detail = {"has_order": True,"tag_list":y, "in_whitelist": True,"user_city_tag_id": 328,"device_id": '861916048000595'}
# param_detail = {"device_id":"xx","user_city_tag_id":328,"offset":0,"is_officer":True}
param_dict["params"]=json.dumps(param_detail) param_dict["params"]=json.dumps(param_detail)
a = requests.post(url=url,data=param_dict,headers=header_dict) a = requests.post(url=url,data=param_dict,headers=header_dict)
print(a.content) print(a.content)
# 09FEDF48-82CF-4205-994C-9AAAA2D5DD08
\ No newline at end of file
import redis
import json
import datetime import datetime
import pymysql
import pandas as pd
def make_queue(): def doctor():
native = "58,59,60,61,62,63,64,65" date_str = (datetime.datetime.now() - datetime.timedelta(days=1)).strftime("%Y%m%d")
r.hset(key,"native_queue",native) date_tmp = (datetime.datetime.now() - datetime.timedelta(days=1)).strftime("%Y-%m-%d")
nearby = '88,89,90,91,92,93,94,95' # sql = "select distinct doctor_id from statistic_doctor_rank_factor where partition_date = '{}'".format(date_str)
r.hset(key, "nearby_queue", nearby) # doctor_list = pd.DataFrame(list(result))[0].values.tolist()
nation = '128,129,130,131,132,133,134,135,136,137,138,139'
r.hset(key, "nation_queue", nation)
megacity = '150,151,152,153,154,155,156,157,158,159'
r.hset(key, "megacity_queue", megacity)
sql = "select d.doctor_id,d.service_exposure_pv_30,d.service_ctr_30,d.expert_exposure_pv_30,d.expert_pv_30," \
"b.merchant_id," \
def user_portr(): "m.doctor_ad_money_30_days,m.expand_rechange_amount_30,m.service_pv_30,m.expert_pv_30,m.organization_pv_30," \
key = 'user_portrait_recommend_diary_queue:device_id:%s:%s' % \ "budan.budan_payment_30_days " \
(device_id, datetime.datetime.now().strftime('%Y-%m-%d')) "from statistic_doctor_rank_factor d " \
r.hset(key, "cursor", "0") "left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \
r.hset(key, "len_cursor", "0") "left join statistic_merchant_rank_factor m on b.merchant_id = m.merchant_id " \
r.hset(key, "cpc_queue", json.dumps([58, 59, 60, 61, 62, 63, 64, 65])) "left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id " \
r.hset(key, "diary_queue", json.dumps([88, 89, 90, 91, 92, 93, 94, 95])) "where d.partition_date = '{}' and m.partition_date = '{}' " \
print(r.hgetall(key)) "and budan.stat_date = '{}'".format(date_str,date_str,date_tmp)
db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor()
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
print(df.head(6))
if __name__ == "__main__": if __name__ == "__main__":
device_id = "860445048868273" doctor()
user_portr()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment