Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
d147e9b5
Commit
d147e9b5
authored
Dec 12, 2018
by
高雅喆
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of git.wanmeizhensuo.com:ML/ffm-baseline
add if
parents
95adea27
d9a211b7
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
36 additions
and
25 deletions
+36
-25
ffm.py
tensnsorflow/ffm.py
+36
-25
No files found.
tensnsorflow/ffm.py
View file @
d147e9b5
...
...
@@ -4,6 +4,7 @@ import pymysql
import
pandas
as
pd
from
multiprocessing
import
Pool
import
numpy
as
np
import
datetime
from
sqlalchemy
import
create_engine
...
...
@@ -20,23 +21,30 @@ def con_sql(db,sql):
db
.
close
()
return
df
def
test
():
sql
=
"select max(update_time) from ffm_diary_queue"
db
=
pymysql
.
connect
(
host
=
'192.168.15.12'
,
port
=
4000
,
user
=
'root'
,
db
=
'eagle'
)
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchone
()[
0
]
db
.
close
()
print
(
result
)
#
def test():
#
sql = "select max(update_time) from ffm_diary_queue"
#
db = pymysql.connect(host='192.168.15.12', port=4000, user='root', db='eagle')
#
cursor = db.cursor()
#
cursor.execute(sql)
#
result = cursor.fetchone()[0]
#
db.close()
#
print(result)
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select device_id,y,z,stat_date,ucity_id,cid_id,clevel1_id,ccity_name from esmm_train_data"
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
3
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select device_id,y,z,stat_date,ucity_id,cid_id,clevel1_id,ccity_name from esmm_train_data "
\
"where stat_date >= '{}'"
.
format
(
start
)
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
})
print
(
"esmm data ok"
)
print
(
df
.
head
())
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
...
...
@@ -47,17 +55,19 @@ def get_data():
print
(
df
.
head
())
print
(
"shape"
)
print
(
df
.
shape
)
df
=
pd
.
merge
(
df
,
get_statistics
(),
on
=
"device_id"
,
how
=
'left'
)
.
fillna
(
0
)
df
=
pd
.
merge
(
df
,
get_statistics
(),
how
=
'left'
)
.
fillna
(
0
)
print
(
"merge"
)
print
(
df
.
head
())
print
(
"shape"
)
print
(
df
.
shape
)
# transform(df)
df
=
df
.
drop
(
"device_id"
,
axis
=
1
)
print
(
df
.
head
())
transform
(
df
,
validate_date
)
def
transform
(
df
):
def
transform
(
df
,
validate_date
):
model
=
multiFFMFormatPandas
()
df
=
model
.
fit_transform
(
df
,
y
=
"y"
,
n
=
80000
,
processes
=
1
0
)
df
=
model
.
fit_transform
(
df
,
y
=
"y"
,
n
=
80000
,
processes
=
1
8
)
df
=
pd
.
DataFrame
(
df
)
df
[
"stat_date"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
0
])
df
[
"device_id"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
1
])
...
...
@@ -68,16 +78,17 @@ def transform(df):
df
[
"ffm"
]
=
df
[
0
]
.
apply
(
lambda
x
:
","
.
join
(
x
.
split
(
","
)[
4
:]))
df
[
"ffm"
]
=
df
[
"seq"
]
.
str
.
cat
(
df
[
"ffm"
],
sep
=
","
)
df
[
"random"
]
=
np
.
random
.
randint
(
1
,
2147483647
,
df
.
shape
[
0
])
df
=
df
.
drop
(
0
,
axis
=
1
)
.
drop
(
"seq"
,
axis
=
1
)
df
=
df
.
drop
(
[
0
,
"seq"
],
axis
=
1
)
print
(
df
.
head
())
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
df
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
train
=
df
[
df
[
"stat_date"
]
!=
"2018-11-25"
]
train
=
df
[
df
[
"stat_date"
]
!=
validate_date
]
train
=
train
.
drop
(
"stat_date"
,
axis
=
1
)
test
=
df
[
df
[
"stat_date"
]
==
"2018-11-25"
]
print
(
"train shape"
)
print
(
train
.
shape
)
test
=
df
[
df
[
"stat_date"
]
==
validate_date
]
test
=
test
.
drop
(
"stat_date"
,
axis
=
1
)
print
(
"test shape"
)
print
(
test
.
shape
)
train
.
to_csv
(
path
+
"train.csv"
,
index
=
None
)
test
.
to_csv
(
path
+
"test.csv"
,
index
=
None
)
# yconnect = create_engine('mysql+pymysql://root:3SYz54LS9#^9sBvC@10.66.157.22:4000/jerry_test?charset=utf8')
...
...
@@ -95,15 +106,15 @@ def transform(df):
def
get_statistics
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'eagle'
)
sql
=
"select device_id,device_type,
channel,
total,精选,直播,鼻部,眼部,微整,牙齿,轮廓,美肤抗衰,"
\
sql
=
"select device_id,device_type,total,精选,直播,鼻部,眼部,微整,牙齿,轮廓,美肤抗衰,"
\
"吸脂,脂肪填充,隆胸,私密,毛发管理,公立,韩国 from home_tab_click"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"
device_type"
,
2
:
"channel"
,
3
:
"total"
})
for
i
in
df
.
columns
.
difference
([
"device_id"
,
"
device_type"
,
"channel
"
,
"total"
]):
df
=
con_sql
(
db
,
sql
)
.
drop_duplicates
()
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"
os"
,
2
:
"total"
})
for
i
in
df
.
columns
.
difference
([
"device_id"
,
"
os
"
,
"total"
]):
df
[
i
]
=
df
[
i
]
/
df
[
"total"
]
df
=
df
.
drop
(
"total"
,
axis
=
1
)
return
df
class
multiFFMFormatPandas
:
def
__init__
(
self
):
self
.
field_index_
=
None
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment