Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
d981e8a1
Commit
d981e8a1
authored
Jan 17, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
把日记二级类别拆分
parent
cb4fd4af
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
10 additions
and
23 deletions
+10
-23
pipe.sh
tensnsorflow/pipe.sh
+3
-3
test.py
tensnsorflow/test.py
+6
-10
train.py
tensnsorflow/train.py
+1
-10
No files found.
tensnsorflow/pipe.sh
View file @
d981e8a1
...
...
@@ -33,15 +33,15 @@ rm ${DATA_PATH}/nearby/nearby_*
echo
"train..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.3
--learning_rate
=
0.0001
--deep_layers
=
256,128
--dropout
=
0.8,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
0
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
--task_type
=
train
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.3
--learning_rate
=
0.0001
--deep_layers
=
256,128
--dropout
=
0.8,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
1
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
--task_type
=
train
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.3
--learning_rate
=
0.0001
--deep_layers
=
256,128
--dropout
=
0.8,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
0
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.3
--learning_rate
=
0.0001
--deep_layers
=
256,128
--dropout
=
0.8,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
1
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.3
--learning_rate
=
0.0001
--deep_layers
=
256,128
--dropout
=
0.8,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
0
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.3
--learning_rate
=
0.0001
--deep_layers
=
256,128
--dropout
=
0.8,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
1
1
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
echo
"sort and 2sql"
${
PYTHON_PATH
}
${
OLD_PATH
}
/Model_pipline/sort_and_2sql.py
...
...
tensnsorflow/test.py
View file @
d981e8a1
...
...
@@ -28,19 +28,15 @@ def gen_tfrecords(in_file):
df
=
pd
.
read_csv
(
in_file
)
for
i
in
range
(
df
.
shape
[
0
]):
feats
=
[
"ucity_id"
,
"clevel1_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"l1"
,
"time"
,
"stat_date"
,
"l2"
]
id
=
np
.
array
([])
for
j
in
feats
:
id
=
np
.
append
(
id
,
df
[
j
][
i
])
features
=
tf
.
train
.
Features
(
feature
=
{
"y"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"y"
][
i
]])),
"z"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"z"
][
i
]])),
"top"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"top"
][
i
]])),
"channel"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"channel"
][
i
]])),
"ucity_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"ucity_id"
][
i
]])),
"clevel1_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"clevel1_id"
][
i
]])),
"ccity_name"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"ccity_name"
][
i
]])),
"device_type"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"device_type"
][
i
]])),
"manufacturer"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"manufacturer"
][
i
]])),
"level2_ids"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"level2_ids"
][
i
]])),
"time"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"time"
][
i
]])),
"stat_date"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"stat_date"
][
i
]]))
"ids"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
id
.
astype
(
np
.
int
)))
})
example
=
tf
.
train
.
Example
(
features
=
features
)
...
...
tensnsorflow/train.py
View file @
d981e8a1
...
...
@@ -53,16 +53,7 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
features
=
{
"y"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"z"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"top"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"channel"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"ucity_id"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"clevel1_id"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"ccity_name"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"device_type"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"manufacturer"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"level2_ids"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"time"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"stat_date"
:
tf
.
FixedLenFeature
([],
tf
.
int64
)
"ids"
:
tf
.
FixedLenFeature
([
11
],
tf
.
int64
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment