Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
e1e942a3
Commit
e1e942a3
authored
Dec 21, 2018
by
高雅喆
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of git.wanmeizhensuo.com:ML/ffm-baseline
change , to ;
parents
5b274235
167ea8f6
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
34 additions
and
17 deletions
+34
-17
ffm.py
tensnsorflow/ffm.py
+34
-17
No files found.
tensnsorflow/ffm.py
View file @
e1e942a3
...
...
@@ -137,36 +137,48 @@ class multiFFMFormatPandas:
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
# db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
# sql = "select max(stat_date) from esmm_train_data"
# validate_date = con_sql(db, sql)[0].values.tolist()[0]
validate_date
=
"2018-12-19"
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
6
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
# temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
# start = (temp - datetime.timedelta(days=30)).strftime("%Y-%m-%d")
start
=
"2018-11-19"
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time "
\
"from esmm_train_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id "
\
# db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
# sql = "select e.y,e.z,e.stat_date,e.ucity_id,f.level2_ids,e.ccity_name," \
# "u.device_type,u.manufacturer,u.channel,c.top,cid_time.time,s.hospital_id,s.doctor_id " \
# "from esmm_train_data e left join user_feature u on e.device_id = u.device_id " \
# "left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id " \
# "left join service_hospital s on e.diary_service_id = s.id left join diary_feat f" \
# "where e.stat_date >= '{}'".format(start)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,f.level2_ids "
\
"from jerry_test.esmm_train_data e left join jerry_prod.diary_feat f "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
con_sql
(
db
,
sql
)
print
(
df
.
shape
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"time"
})
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"time"
,
11
:
"hospital_id"
,
12
:
"doctor_id"
})
print
(
"esmm data ok"
)
print
(
df
.
head
(
2
))
print
(
df
.
head
(
2
))
features
=
0
category
=
[
"ucity_id"
,
"clevel1_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"doctor_id"
,
"hospital_id"
]
for
i
in
category
:
df
[
i
]
=
df
[
i
]
.
fillna
(
"na"
)
features
=
features
+
len
(
df
[
i
]
.
unique
())
df
[
"time"
]
=
df
[
"time"
]
.
fillna
(
0.0
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
df
[
"z"
]
=
df
[
"z"
]
.
astype
(
"str"
)
df
[
"top"
]
=
df
[
"top"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"stat_date"
]
.
str
.
cat
([
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"stat_date"
],
axis
=
1
)
.
fillna
(
0.0
)
df
=
df
.
drop
([
"z"
,
"stat_date"
],
axis
=
1
)
print
(
df
.
head
(
2
))
features
=
0
for
i
in
[
"ucity_id"
,
"clevel1_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
]:
features
=
features
+
len
(
df
[
i
]
.
unique
())
print
(
"fields:{}"
.
format
(
df
.
shape
[
1
]
-
1
))
print
(
"features:{}"
.
format
(
features
))
ccity_name
=
list
(
set
(
df
[
"ccity_name"
]
.
values
.
tolist
()))
...
...
@@ -217,6 +229,10 @@ def get_predict_set(ucity_id,model,ccity_name):
df
=
df
[
df
[
"ccity_name"
]
.
isin
(
ccity_name
)]
print
(
"after ccity_name filter:"
)
print
(
df
.
shape
)
category
=
[
"ucity_id"
,
"clevel1_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
]
for
i
in
category
:
df
[
i
]
=
df
[
i
]
.
fillna
(
"na"
)
df
[
"time"
]
=
df
[
"time"
]
.
fillna
(
0.0
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"top"
]
=
df
[
"top"
]
.
astype
(
"str"
)
...
...
@@ -226,7 +242,7 @@ def get_predict_set(ucity_id,model,ccity_name):
df
[
"y"
]
=
df
[
"label"
]
.
str
.
cat
(
[
df
[
"device_id"
]
.
values
.
tolist
(),
df
[
"ucity_id"
]
.
values
.
tolist
(),
df
[
"cid_id"
]
.
values
.
tolist
(),
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"label"
,
"device_id"
,
"cid_id"
],
axis
=
1
)
.
fillna
(
0.0
)
df
=
df
.
drop
([
"z"
,
"label"
,
"device_id"
,
"cid_id"
],
axis
=
1
)
print
(
df
.
head
(
2
))
df
=
model
.
transform
(
df
,
n
=
160000
,
processes
=
22
)
df
=
pd
.
DataFrame
(
df
)
...
...
@@ -262,6 +278,7 @@ if __name__ == "__main__":
df
,
validate_date
,
ucity_id
,
ccity_name
=
get_data
()
model
=
transform
(
df
,
validate_date
)
# get_predict_set(ucity_id,model,ccity_name)
b
=
time
.
time
()
print
(
"cost(分钟)"
)
print
((
b
-
a
)
/
60
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment