Commit e33b91dc authored by 张彦钊's avatar 张彦钊

add check

parent 2df32efc
......@@ -59,6 +59,8 @@ ${PYTHON_PATH} ${MODEL_PATH}/Model_pipline/DeepCvrMTL.py --ctr_task_wgt=0.3 --le
echo "train time"
current=$(date "+%Y-%m-%d %H:%M:%S")
timeStamp=$(date -d "$current" +%s)
currentTimeStamp=$((timeStamp*1000+`date "+%N"`/1000000))
echo $current
echo "infer native..."
......
......@@ -136,6 +136,49 @@ class multiFFMFormatPandas:
else:
return False
def check():
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select max(stat_date) from esmm_train_data"
validate_date = con_sql(db, sql)[0].values.tolist()[0]
print("validate_date:" + validate_date)
temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
start = (temp - datetime.timedelta(days=30)).strftime("%Y-%m-%d")
print(start)
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name," \
"u.device_type,u.manufacturer,u.channel,c.top,df.level2_ids,e.device_id " \
"from esmm_train_data e left join user_feature u on e.device_id = u.device_id " \
"left join cid_type_top c on e.device_id = c.device_id " \
"left join diary_feat df on e.cid_id = df.diary_id " \
"where e.stat_date >= '{}'".format(start)
df = con_sql(db, sql)
print(df.shape)
df = df.rename(columns={0: "y", 1: "z", 2: "stat_date", 3: "ucity_id",4: "clevel1_id", 5: "ccity_name",
6:"device_type",7:"manufacturer",8:"channel",9:"top",10:"level2_ids",11:"device_id"})
print("esmm data ok")
df = df.fillna("na")
# print(df.head(2)
df["y"] = df["y"]+df["z"]
df["clevel1_id"] = df["clevel1_id"].astype("str")
df["top"] = df["top"].astype("str")
df["feat"] = df["ucity_id"].str.cat([df["clevel1_id"].values.tolist(),df["ccity_name"].values.tolist(),
df["device_type"].values.tolist(),df["manufacturer"].values.tolist(),
df["channel"].values.tolist(), df["top"].values.tolist(),
df["level2_ids"].values.tolist()], sep=",")
df = df.drop(["z","stat_date","ucity_id","clevel1_id", "ccity_name","device_type",
"manufacturer","channel","top","level2_ids","device_id"], axis=1)
print(df.head(2))
print("\n")
print("before drop duplicate")
print(df.shape[0])
print("after drop duplicate")
df = df.drop_duplicates()
print(df.shape[0])
print("after group by")
print(len(df.groupby("feat")))
def get_data():
......@@ -297,10 +340,12 @@ def get_predict_set(ucity_id,model,ccity_name,manufacturer,channel,level2_ids):
if __name__ == "__main__":
path = "/home/gmuser/esmm_data/"
a = time.time()
temp, validate_date, ucity_id,ccity_name,manufacturer,channel,level2_ids = get_data()
model = transform(temp, validate_date)
get_predict_set(ucity_id,model,ccity_name,manufacturer,channel,level2_ids)
b = time.time()
print("cost(分钟)")
print((b-a)/60)
# a = time.time()
# temp, validate_date, ucity_id,ccity_name,manufacturer,channel,level2_ids = get_data()
# model = transform(temp, validate_date)
# get_predict_set(ucity_id,model,ccity_name,manufacturer,channel,level2_ids)
# b = time.time()
# print("cost(分钟)")
# print((b-a)/60)
check()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment