Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
e45c3070
Commit
e45c3070
authored
Dec 12, 2018
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change transform
parent
3b881969
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
110 additions
and
112 deletions
+110
-112
ffm.py
tensnsorflow/ffm.py
+110
-112
No files found.
tensnsorflow/ffm.py
View file @
e45c3070
...
...
@@ -31,6 +31,112 @@ def con_sql(db,sql):
# db.close()
# print(result)
class
multiFFMFormatPandas
:
def
__init__
(
self
):
self
.
field_index_
=
None
self
.
feature_index_
=
None
self
.
y
=
None
def
fit
(
self
,
df
,
y
=
None
):
self
.
y
=
y
df_ffm
=
df
[
df
.
columns
.
difference
([
self
.
y
])]
if
self
.
field_index_
is
None
:
self
.
field_index_
=
{
col
:
i
for
i
,
col
in
enumerate
(
df_ffm
)}
if
self
.
feature_index_
is
not
None
:
last_idx
=
max
(
list
(
self
.
feature_index_
.
values
()))
if
self
.
feature_index_
is
None
:
self
.
feature_index_
=
dict
()
for
col
in
df
.
columns
:
self
.
feature_index_
[
col
]
=
1
last_idx
=
1
vals
=
df
[
col
]
.
unique
()
for
val
in
vals
:
if
pd
.
isnull
(
val
):
continue
name
=
'{}_{}'
.
format
(
col
,
val
)
if
name
not
in
self
.
feature_index_
:
self
.
feature_index_
[
name
]
=
last_idx
last_idx
+=
1
return
self
def
fit_transform
(
self
,
df
,
y
=
None
,
n
=
50000
,
processes
=
4
):
# n是每个线程运行最大的数据条数,processes是线程数
self
.
fit
(
df
,
y
)
n
=
n
processes
=
processes
return
self
.
transform
(
df
,
n
,
processes
)
def
transform_row_
(
self
,
row
,
t
):
ffm
=
[]
for
col
,
val
in
row
.
loc
[
row
.
index
!=
self
.
y
]
.
to_dict
()
.
items
():
col_type
=
t
[
col
]
name
=
'{}_{}'
.
format
(
col
,
val
)
if
col_type
.
kind
==
'O'
:
ffm
.
append
(
'{}:{}:1'
.
format
(
self
.
field_index_
[
col
]
+
1
,
self
.
feature_index_
[
name
]))
elif
col_type
.
kind
!=
'O'
:
ffm
.
append
(
'{}:{}:{}'
.
format
(
self
.
field_index_
[
col
]
+
1
,
self
.
feature_index_
[
col
],
val
))
result
=
' '
.
join
(
ffm
)
if
self
.
y
is
not
None
:
result
=
str
(
row
.
loc
[
row
.
index
==
self
.
y
][
0
])
+
","
+
result
if
self
.
y
is
None
:
result
=
str
(
0
)
+
","
+
result
return
result
def
transform
(
self
,
df
,
n
=
1500
,
processes
=
2
):
# n是每个线程运行最大的数据条数,processes是线程数
t
=
df
.
dtypes
.
to_dict
()
data_list
=
self
.
data_split_line
(
df
,
n
)
# 设置进程的数量
pool
=
Pool
(
processes
)
print
(
"总进度: "
+
str
(
len
(
data_list
)))
for
i
in
range
(
len
(
data_list
)):
data_list
[
i
]
=
pool
.
apply_async
(
self
.
pool_function
,
(
data_list
[
i
],
t
,))
result_map
=
{}
for
i
in
data_list
:
result_map
.
update
(
i
.
get
())
pool
.
close
()
pool
.
join
()
return
pd
.
Series
(
result_map
)
# 多进程计算方法
def
pool_function
(
self
,
df
,
t
):
return
{
idx
:
self
.
transform_row_
(
row
,
t
)
for
idx
,
row
in
df
.
iterrows
()}
# 切分数据方法,传人dataframe和切分条数的步长,返回dataframe的集合,每个dataframe中含有若干条数据
def
data_split_line
(
self
,
data
,
step
):
data_list
=
[]
x
=
0
while
True
:
if
x
+
step
<
data
.
__len__
():
data_list
.
append
(
data
.
loc
[
x
:
x
+
step
])
x
=
x
+
step
+
1
else
:
data_list
.
append
(
data
.
loc
[
x
:
data
.
__len__
()])
break
return
data_list
# 原生转化方法,不需要多进程
def
native_transform
(
self
,
df
):
t
=
df
.
dtypes
.
to_dict
()
return
pd
.
Series
({
idx
:
self
.
transform_row_
(
row
,
t
)
for
idx
,
row
in
df
.
iterrows
()})
# 下面这个方法不是这个类原有的方法,是新增的。目的是用来判断这个用户是不是在训练数据集中存在
def
is_feature_index_exist
(
self
,
name
):
if
name
in
self
.
feature_index_
:
return
True
else
:
return
False
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
...
...
@@ -128,7 +234,8 @@ def get_predict_set():
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
,
8
:
"label"
})
print
(
"native_pre ok"
+
df
.
shape
)
print
(
"native_pre ok"
)
print
(
df
.
shape
)
# df["clevel1_id"] = df["clevel1_id"].astype("str")
# df["cid_id"] = df["cid_id"].astype("str")
# df["y"] = df["y"].astype("str")
...
...
@@ -143,7 +250,8 @@ def get_predict_set():
"吸脂,脂肪填充,隆胸,私密,毛发管理,公立,韩国 from home_tab_click where device_id in {}"
.
format
(
device
)
statics
=
con_sql
(
db
,
sql
)
native_pre
=
pd
.
merge
(
df
,
statics
,
how
=
'left'
)
.
fillna
(
0
)
print
(
"native_pre ok"
+
native_pre
.
shape
)
print
(
"native_pre ok"
)
print
(
native_pre
.
shape
)
# df = pd.DataFrame(df)
# df["stat_date"] = df[0].apply(lambda x: x.split(",")[0])
...
...
@@ -159,116 +267,6 @@ def get_predict_set():
# print(df.head())
class
multiFFMFormatPandas
:
def
__init__
(
self
):
self
.
field_index_
=
None
self
.
feature_index_
=
None
self
.
y
=
None
def
fit
(
self
,
df
,
y
=
None
):
self
.
y
=
y
df_ffm
=
df
[
df
.
columns
.
difference
([
self
.
y
])]
if
self
.
field_index_
is
None
:
self
.
field_index_
=
{
col
:
i
for
i
,
col
in
enumerate
(
df_ffm
)}
if
self
.
feature_index_
is
not
None
:
last_idx
=
max
(
list
(
self
.
feature_index_
.
values
()))
if
self
.
feature_index_
is
None
:
self
.
feature_index_
=
dict
()
for
col
in
df
.
columns
:
self
.
feature_index_
[
col
]
=
1
last_idx
=
1
vals
=
df
[
col
]
.
unique
()
for
val
in
vals
:
if
pd
.
isnull
(
val
):
continue
name
=
'{}_{}'
.
format
(
col
,
val
)
if
name
not
in
self
.
feature_index_
:
self
.
feature_index_
[
name
]
=
last_idx
last_idx
+=
1
return
self
def
fit_transform
(
self
,
df
,
y
=
None
,
n
=
50000
,
processes
=
4
):
# n是每个线程运行最大的数据条数,processes是线程数
self
.
fit
(
df
,
y
)
n
=
n
processes
=
processes
return
self
.
transform
(
df
,
n
,
processes
)
def
transform_row_
(
self
,
row
,
t
):
ffm
=
[]
for
col
,
val
in
row
.
loc
[
row
.
index
!=
self
.
y
]
.
to_dict
()
.
items
():
col_type
=
t
[
col
]
name
=
'{}_{}'
.
format
(
col
,
val
)
if
col_type
.
kind
==
'O'
:
ffm
.
append
(
'{}:{}:1'
.
format
(
self
.
field_index_
[
col
]
+
1
,
self
.
feature_index_
[
name
]))
elif
col_type
.
kind
!=
'O'
:
ffm
.
append
(
'{}:{}:{}'
.
format
(
self
.
field_index_
[
col
]
+
1
,
self
.
feature_index_
[
col
],
val
))
result
=
' '
.
join
(
ffm
)
if
self
.
y
is
not
None
:
result
=
str
(
row
.
loc
[
row
.
index
==
self
.
y
][
0
])
+
","
+
result
if
self
.
y
is
None
:
result
=
str
(
0
)
+
","
+
result
return
result
def
transform
(
self
,
df
,
n
=
1500
,
processes
=
2
):
# n是每个线程运行最大的数据条数,processes是线程数
t
=
df
.
dtypes
.
to_dict
()
data_list
=
self
.
data_split_line
(
df
,
n
)
# 设置进程的数量
pool
=
Pool
(
processes
)
print
(
"总进度: "
+
str
(
len
(
data_list
)))
for
i
in
range
(
len
(
data_list
)):
data_list
[
i
]
=
pool
.
apply_async
(
self
.
pool_function
,
(
data_list
[
i
],
t
,))
result_map
=
{}
for
i
in
data_list
:
result_map
.
update
(
i
.
get
())
pool
.
close
()
pool
.
join
()
return
pd
.
Series
(
result_map
)
# 多进程计算方法
def
pool_function
(
self
,
df
,
t
):
return
{
idx
:
self
.
transform_row_
(
row
,
t
)
for
idx
,
row
in
df
.
iterrows
()}
# 切分数据方法,传人dataframe和切分条数的步长,返回dataframe的集合,每个dataframe中含有若干条数据
def
data_split_line
(
self
,
data
,
step
):
data_list
=
[]
x
=
0
while
True
:
if
x
+
step
<
data
.
__len__
():
data_list
.
append
(
data
.
loc
[
x
:
x
+
step
])
x
=
x
+
step
+
1
else
:
data_list
.
append
(
data
.
loc
[
x
:
data
.
__len__
()])
break
return
data_list
# 原生转化方法,不需要多进程
def
native_transform
(
self
,
df
):
t
=
df
.
dtypes
.
to_dict
()
return
pd
.
Series
({
idx
:
self
.
transform_row_
(
row
,
t
)
for
idx
,
row
in
df
.
iterrows
()})
# 下面这个方法不是这个类原有的方法,是新增的。目的是用来判断这个用户是不是在训练数据集中存在
def
is_feature_index_exist
(
self
,
name
):
if
name
in
self
.
feature_index_
:
return
True
else
:
return
False
if
__name__
==
"__main__"
:
path
=
"/home/gmuser/ffm/"
# get_data()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment