Commit e84f5d92 authored by 王志伟's avatar 王志伟
parents 6719e35b d7f015ec
#! /bin/bash
PYTHON_PATH=/home/gaoyazhe/miniconda3/bin/python
MODEL_PATH=/srv/apps/ffm-baseline/tensnsorflow/es
MODEL_PATH=/srv/apps/ffm-baseline/eda/esmm/Model_pipline
DATA_PATH=/data/esmm
echo "rm leave tfrecord"
......@@ -43,4 +43,4 @@ echo "infer nearby..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=8 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer > ${DATA_PATH}/nearby_infer.log
echo "sort and 2sql"
${PYTHON_PATH} ${MODEL_PATH}/to_database.py
${PYTHON_PATH} ${MODEL_PATH}/to_database.py > ${DATA_PATH}/insert_database.log
......@@ -36,10 +36,10 @@ def native_set_join(lst):
def main():
# native queue
df2 = pd.read_csv('/data/esmm/native.csv')
df2 = pd.read_csv('/home/gmuser/esmm_data/native.csv')
df2['cid_id'] = df2['cid_id'].astype(str)
df1 = pd.read_csv("/data/esmm/native/pred.txt",sep='\t',header=None,names=["ctr","cvr","ctcvr"])
df1 = pd.read_csv("/home/gmuser/esmm_data/native/pred.txt",sep='\t',header=None,names=["ctr","cvr","ctcvr"])
df2["ctr"],df2["cvr"],df2["ctcvr"] = df1["ctr"],df1["cvr"],df1["ctcvr"]
df3 = df2.groupby(by=["uid","city"]).apply(lambda x: x.sort_values(by="ctcvr",ascending=False)).reset_index(drop=True).groupby(by=["uid","city"]).agg({'cid_id':native_set_join}).reset_index(drop=False)
df3.columns = ["device_id","city_id","native_queue"]
......@@ -47,10 +47,10 @@ def main():
# nearby queue
df2 = pd.read_csv('/data/esmm/nearby.csv')
df2 = pd.read_csv('/home/gmuser/esmm_data/nearby.csv')
df2['cid_id'] = df2['cid_id'].astype(str)
df1 = pd.read_csv("/data/esmm/nearby/pred.txt",sep='\t',header=None,names=["ctr","cvr","ctcvr"])
df1 = pd.read_csv("/home/gmuser/esmm_data/nearby/pred.txt",sep='\t',header=None,names=["ctr","cvr","ctcvr"])
df2["ctr"], df2["cvr"], df2["ctcvr"] = df1["ctr"], df1["cvr"], df1["ctcvr"]
df4 = df2.groupby(by=["uid","city"]).apply(lambda x: x.sort_values(by="ctcvr",ascending=False)).reset_index(drop=True).groupby(by=["uid","city"]).agg({'cid_id':nearby_set_join}).reset_index(drop=False)
df4.columns = ["device_id","city_id","nearby_queue"]
......@@ -64,6 +64,8 @@ def main():
df_all["time"] = ctime
print("union_device_count",df_all.shape)
host='10.66.157.22'
port=4000
user='root'
......@@ -72,33 +74,21 @@ def main():
charset='utf8'
engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s:%s/%s") % (user, password, host, port, db))
df_merge = df_all['device_id'] + df_all['city_id']
df_merge_str = (str(list(df_merge.values))).strip('[]')
try:
# df_merge = df_all[['device_id','city_id']].apply(lambda x: ''.join(x),axis=1)
delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(df_merge_str)
con = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
cur = con.cursor()
cur.execute(delete_str)
con.commit()
df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False)
except Exception as e:
print(e)
try:
# df_merge = df_all[['device_id','city_id']].apply(lambda x: ''.join(x),axis=1)
df_merge = df_all['device_id'] + df_all['city_id']
df_merge_str = (str(list(df_merge.values))).strip('[]')
delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(df_merge_str)
con = pymysql.connect(host='152.136.44.138', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
con = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
cur = con.cursor()
cur.execute(delete_str)
con.commit()
engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s:%s/%s") % (user, password,'152.136.44.138', port, db))
df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False)
df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False,chunksize=8000)
except Exception as e:
print(e)
print("done")
if __name__ == '__main__':
main()
\ No newline at end of file
......@@ -43,4 +43,4 @@ echo "infer nearby..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=8 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer > ${DATA_PATH}/nearby_infer.log
echo "sort and 2sql"
${PYTHON_PATH} ${MODEL_PATH}/to_database.py
${PYTHON_PATH} ${MODEL_PATH}/to_database.py > ${DATA_PATH}/insert_database.log
......@@ -86,19 +86,7 @@ def main():
except Exception as e:
print(e)
try:
# df_merge = df_all[['device_id','city_id']].apply(lambda x: ''.join(x),axis=1)
delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(df_merge_str)
con = pymysql.connect(host='152.136.44.138', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
cur = con.cursor()
cur.execute(delete_str)
con.commit()
engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s:%s/%s") % (user, password,'152.136.44.138', port, db))
df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False)
except Exception as e:
print(e)
print("done")
if __name__ == '__main__':
main()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment