Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
ea33c974
Commit
ea33c974
authored
May 24, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
5d0090c6
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
69 additions
and
43 deletions
+69
-43
feature_engineering.py
tensnsorflow/feature_engineering.py
+43
-18
multi.py
tensnsorflow/multi.py
+26
-25
No files found.
tensnsorflow/feature_engineering.py
View file @
ea33c974
...
...
@@ -5,6 +5,7 @@ import pytispark.pytispark as pti
from
pyspark.sql
import
SparkSession
import
datetime
import
pandas
as
pd
import
time
def
app_list_func
(
x
,
l
):
...
...
@@ -19,7 +20,12 @@ def app_list_func(x,l):
def
multi_hot
(
df
,
column
,
n
):
a
=
time
.
time
()
v
=
df
.
select
(
column
)
.
distinct
()
.
rdd
.
map
(
lambda
x
:
x
[
0
])
.
collect
()
b
=
time
.
time
()
print
(
column
)
print
(
"cost time 分钟"
)
print
((
b
-
a
)
/
60
)
app_list_value
=
[
str
(
i
)
.
split
(
","
)
for
i
in
v
]
app_list_unique
=
[]
for
i
in
app_list_value
:
...
...
@@ -79,46 +85,59 @@ def feature_engineer():
unique_values
=
[]
for
i
in
features
:
a
=
time
.
time
()
unique_values
.
extend
(
df
.
select
(
i
)
.
distinct
()
.
rdd
.
map
(
lambda
x
:
x
[
0
])
.
collect
())
b
=
time
.
time
()
print
(
i
)
print
((
b
-
a
)
/
60
)
temp
=
list
(
range
(
2
+
apps_number
+
level2_number
+
level3_number
,
2
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
c
=
time
.
time
()
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
.
rdd
rdd
.
persist
()
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
\
.
map
(
lambda
x
:
(
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
"maintain_time"
,
"recover_time"
)
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
d
=
time
.
time
()
print
(
"rdd"
)
print
((
d
-
c
)
/
60
)
rdd
.
persist
()
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
# train = rdd.filter(lambda x: x[0] != validate_date) \
# .map(lambda x: (float(x[1]),float(x[2]),app_list_func(x[3], app_list_map), app_list_func(x[4], leve2_map),
# app_list_func(x[5], leve3_map), app_list_func(x[6], leve2_map),app_list_func(x[7], leve2_map),
# app_list_func(x[8], leve2_map), app_list_func(x[9], leve2_map),app_list_func(x[10], leve2_map),
# app_list_func(x[11], leve2_map),app_list_func(x[12], leve2_map),
# [value_map[x[0]], value_map[x[13]],value_map[x[14]], value_map[x[15]], value_map[x[16]],
# value_map[x[17]],value_map[x[18]], value_map[x[19]], value_map[x[20]],value_map[x[21]],
# value_map[x[22]], value_map[x[23]], value_map[x[24]],value_map[x[25]],value_map[x[26]]]))
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
.
map
(
lambda
x
:(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
]))
f
=
time
.
time
()
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
h
=
time
.
time
()
print
(
"train tfrecord done"
)
print
((
h
-
f
)
/
60
)
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
\
.
map
(
lambda
x
:
(
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
lambda
x
:(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
]))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
...
...
@@ -156,12 +175,13 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
df
=
spark
.
sql
(
sql
)
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
c
=
time
.
time
()
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
\
.
rdd
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
...
...
@@ -177,7 +197,9 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
value_map
.
get
(
x
[
29
],
299985
)
]))
rdd
.
persist
()
d
=
time
.
time
()
print
(
"rdd"
)
print
((
d
-
c
)
/
60
)
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native csv"
)
...
...
@@ -186,12 +208,15 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/",header = 'true')
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
f
=
time
.
time
()
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
\
.
save
(
path
=
path
+
"native/"
,
mode
=
"overwrite"
)
print
(
"native tfrecord done"
)
h
=
time
.
time
()
print
((
h
-
f
)
/
60
)
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
...
...
tensnsorflow/multi.py
View file @
ea33c974
...
...
@@ -128,31 +128,32 @@ def con_sql(db,sql):
if
__name__
==
'__main__'
:
sparkConf
=
SparkConf
()
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
"true"
)
\
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
"true"
)
\
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
"false"
)
\
.
set
(
"spark.tispark.plan.allow_index_read"
,
"true"
)
\
.
set
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
\
.
set
(
"spark.tispark.pd.addresses"
,
"172.16.40.158:2379"
)
.
set
(
"spark.io.compression.codec"
,
"lzf"
)
\
.
set
(
"spark.driver.maxResultSize"
,
"8g"
)
.
set
(
"spark.sql.avro.compression.codec"
,
"snappy"
)
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
ti
=
pti
.
TiContext
(
spark
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
# ti.tidbMapDatabase("eagle")
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
path
=
"hdfs:///strategy/esmm/"
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
=
feature
()
get_predict
(
validate_date
,
value_map
,
app_list_map
)
# df = spark.read.format("tfrecords").option("recordType", "Example").load("/strategy/va.tfrecord")
# df.show(1)
# print("aa")
# print("aa")
# df = spark.read.format("tfrecords").load("/strategy/esmm/va/part-r-00000")
# df.show(1)
# sparkConf = SparkConf().set("spark.hive.mapred.supports.subdirectories", "true") \
# .set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true") \
# .set("spark.tispark.plan.allow_index_double_read", "false") \
# .set("spark.tispark.plan.allow_index_read", "true") \
# .set("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") \
# .set("spark.tispark.pd.addresses", "172.16.40.158:2379").set("spark.io.compression.codec", "lzf")\
# .set("spark.driver.maxResultSize", "8g").set("spark.sql.avro.compression.codec","snappy")
#
# spark = SparkSession.builder.config(conf=sparkConf).enableHiveSupport().getOrCreate()
# ti = pti.TiContext(spark)
# ti.tidbMapDatabase("jerry_test")
# # ti.tidbMapDatabase("eagle")
# spark.sparkContext.setLogLevel("WARN")
# path = "hdfs:///strategy/esmm/"
# local_path = "/home/gmuser/esmm/"
#
# validate_date, value_map, app_list_map = feature()
# get_predict(validate_date, value_map, app_list_map)
spark
=
SparkSession
.
builder
.
getOrCreate
()
b
=
[(
"a"
,
1
),
(
"a"
,
1
),
(
"b"
,
3
),
(
"a"
,
2
)]
rdd
=
spark
.
sparkContext
.
parallelize
(
b
)
df
=
spark
.
createDataFrame
(
rdd
)
.
toDF
(
"id"
,
"n"
)
df
.
show
()
t
=
df
.
select
(
"id"
)
.
rdd
.
map
(
lambda
x
:
x
[
0
])
.
collect
()
print
(
t
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment