Commit ec4e2fd3 authored by 张彦钊's avatar 张彦钊

change test file

parent 133d8c9c
...@@ -96,7 +96,6 @@ def model_fn(features, labels, mode, params): ...@@ -96,7 +96,6 @@ def model_fn(features, labels, mode, params):
Feat_Emb = tf.get_variable(name='embeddings', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer()) Feat_Emb = tf.get_variable(name='embeddings', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer())
feat_ids = features['ids'] feat_ids = features['ids']
app_list = features['app_list']
level2_list = features['level2_ids'] level2_list = features['level2_ids']
...@@ -107,12 +106,11 @@ def model_fn(features, labels, mode, params): ...@@ -107,12 +106,11 @@ def model_fn(features, labels, mode, params):
#------build f(x)------ #------build f(x)------
with tf.variable_scope("Shared-Embedding-layer"): with tf.variable_scope("Shared-Embedding-layer"):
embedding_id = tf.nn.embedding_lookup(Feat_Emb,feat_ids) embedding_id = tf.nn.embedding_lookup(Feat_Emb,feat_ids)
app_id = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=app_list, sp_weights=None, combiner="sum")
level2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level2_list, sp_weights=None, combiner="sum") level2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level2_list, sp_weights=None, combiner="sum")
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K) # x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat = tf.concat([tf.reshape(embedding_id,shape=[-1,common_dims]),app_id,level2], axis=1) x_concat = tf.concat([tf.reshape(embedding_id,shape=[-1,common_dims]),level2], axis=1)
with tf.name_scope("CVR_Task"): with tf.name_scope("CVR_Task"):
if mode == tf.estimator.ModeKeys.TRAIN: if mode == tf.estimator.ModeKeys.TRAIN:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment