Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
f2a05193
Commit
f2a05193
authored
Dec 19, 2018
by
王志伟
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
http://git.wanmeizhensuo.com/ML/ffm-baseline
parents
6b6b6a8c
6c231f61
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
96 additions
and
14 deletions
+96
-14
EsmmData.scala
eda/feededa/src/main/scala/com/gmei/EsmmData.scala
+71
-1
ffm.py
tensnsorflow/ffm.py
+25
-13
No files found.
eda/feededa/src/main/scala/com/gmei/EsmmData.scala
View file @
f2a05193
...
...
@@ -226,7 +226,6 @@ object EsmmData {
object
EsmmPredData
{
Logger
.
getLogger
(
"org.apache.spark"
).
setLevel
(
Level
.
WARN
)
...
...
@@ -425,6 +424,77 @@ object EsmmPredData {
sc
.
stop
()
}
}
}
object
GetPortrait
{
Logger
.
getLogger
(
"org.apache.spark"
).
setLevel
(
Level
.
WARN
)
Logger
.
getLogger
(
"org.apache.eclipse.jetty.server"
).
setLevel
(
Level
.
OFF
)
case
class
Params
(
env
:
String
=
"dev"
,
date
:
String
=
GmeiConfig
.
getMinusNDate
(
1
)
)
extends
AbstractParams
[
Params
]
with
Serializable
val
defaultParams
=
Params
()
val
parser
=
new
OptionParser
[
Params
](
"Feed_EDA"
)
{
head
(
"EsmmData"
)
opt
[
String
](
"env"
)
.
text
(
s
"the databases environment you used"
)
.
action
((
x
,
c
)
=>
c
.
copy
(
env
=
x
))
opt
[
String
](
"date"
)
.
text
(
s
"the date you used"
)
.
action
((
x
,
c
)
=>
c
.
copy
(
date
=
x
))
note
(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.EsmmData ./target/scala-2.11/feededa-assembly-0.1.jar \
"""
.
stripMargin
+
s
"| --env ${defaultParams.env}"
)
}
def
main
(
args
:
Array
[
String
])
:
Unit
=
{
parser
.
parse
(
args
,
defaultParams
).
map
{
param
=>
GmeiConfig
.
setup
(
param
.
env
)
val
spark_env
=
GmeiConfig
.
getSparkSession
()
val
sc
=
spark_env
.
_2
val
ti
=
new
TiContext
(
sc
)
ti
.
tidbMapTable
(
dbName
=
"jerry_prod"
,
tableName
=
"data_feed_click"
)
val
diary_tag
=
sc
.
sql
(
s
"""
|select d.diary_id,
|(case when d.tag_type = '1' then d.level1_ids else "" end) level1_ids,
|(case when d.tag_type = '2' then d.level2_ids else "" end) level2_ids,
|(case when d.tag_type = '3' then d.level3_ids else "" end) level3_ids from
| (select c.diary_id,c.tag_type,
| concat_ws(c.level1_id) as level1_ids
| concat_ws(c.level2_id) as level2_ids
| concat_ws(c.level3_id) as level3_ids from
| (select a.diary_id,a.tag_id,b.tag_type,b.level1_id,b.level2_id,b.level3_id
| from tl_hdfs_diary_tags_view a
| left join bl_tag_hierarchy_detail b
| on a.tag_id = b.id
| where a.partition_date = '20181218'
| and b.partition_date = '20181218') c
| group by c.diary_id,c.tag_type) d
|group by d.diary_id
"""
.
stripMargin
)
diary_tag
.
show
()
sc
.
stop
()
}
...
...
tensnsorflow/ffm.py
View file @
f2a05193
...
...
@@ -142,7 +142,7 @@ def get_data():
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
18
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
30
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
...
...
@@ -152,20 +152,26 @@ def get_data():
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
con_sql
(
db
,
sql
)
print
(
df
.
shape
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
})
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"time"
})
print
(
"esmm data ok"
)
print
(
df
.
head
(
2
))
ucity_id
=
list
(
set
(
df
[
"ucity_id"
]
.
values
.
tolist
()))
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
df
[
"z"
]
=
df
[
"z"
]
.
astype
(
"str"
)
df
[
"top"
]
=
df
[
"top"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"stat_date"
]
.
str
.
cat
([
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"stat_date"
],
axis
=
1
)
.
fillna
(
0.0
)
print
(
df
.
head
(
2
))
features
=
len
(
df
[
"ucity_id"
]
.
unique
())
features
=
0
for
i
in
[
"ucity_id"
,
"clevel1_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
]:
features
=
features
+
len
(
df
[
i
]
.
unique
())
print
(
"fields:{}"
.
format
(
df
.
shape
[
1
]
-
1
))
print
(
"features:{}"
.
format
(
features
))
return
df
,
validate_date
,
ucity_id
ccity_name
=
list
(
set
(
df
[
"ccity_name"
]
.
values
.
tolist
()))
ucity_id
=
list
(
set
(
df
[
"ucity_id"
]
.
values
.
tolist
()))
return
df
,
validate_date
,
ucity_id
,
ccity_name
def
transform
(
a
,
validate_date
):
...
...
@@ -193,28 +199,34 @@ def transform(a,validate_date):
return
model
def
get_predict_set
(
ucity_id
,
model
):
def
get_predict_set
(
ucity_id
,
model
,
ccity_name
):
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.label,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time "
\
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time
,e.device_id,e.cid_id
"
\
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid = cid_time.cid_id"
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"label"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
})
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"label"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"time"
,
11
:
"device_id"
,
12
:
"cid_id"
})
print
(
"before filter:"
)
print
(
df
.
shape
)
df
=
df
[
df
[
"ucity_id"
]
.
isin
(
ucity_id
)]
print
(
"after ucity filter:"
)
print
(
df
.
shape
)
df
=
df
[
df
[
"ccity_name"
]
.
isin
(
ccity_name
)]
print
(
"after ccity_name filter:"
)
print
(
df
.
shape
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"top"
]
=
df
[
"top"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
df
[
"z"
]
=
df
[
"z"
]
.
astype
(
"str"
)
df
[
"label"
]
=
df
[
"label"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"label"
]
.
str
.
cat
(
[
df
[
"device_id"
]
.
values
.
tolist
(),
df
[
"ucity_id"
]
.
values
.
tolist
(),
df
[
"cid_id"
]
.
values
.
tolist
(),
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"label"
,
"device_id"
],
axis
=
1
)
.
fillna
(
0.0
)
df
=
df
.
drop
([
"z"
,
"label"
,
"device_id"
,
"cid_id"
],
axis
=
1
)
.
fillna
(
0.0
)
print
(
df
.
head
(
2
))
df
=
model
.
transform
(
df
,
n
=
160000
,
processes
=
22
)
df
=
pd
.
DataFrame
(
df
)
...
...
@@ -247,9 +259,9 @@ def get_predict_set(ucity_id,model):
if
__name__
==
"__main__"
:
path
=
"/home/gmuser/ffm/"
a
=
time
.
time
()
df
,
validate_date
,
ucity_id
=
get_data
()
df
,
validate_date
,
ucity_id
,
ccity_name
=
get_data
()
model
=
transform
(
df
,
validate_date
)
# get_predict_set(ucity_id,model
)
get_predict_set
(
ucity_id
,
model
,
ccity_name
)
b
=
time
.
time
()
print
(
"cost(分钟)"
)
print
((
b
-
a
)
/
60
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment