Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
f8359d52
Commit
f8359d52
authored
May 29, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test fliw
parent
a8f36280
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
8 additions
and
16 deletions
+8
-16
feature_engineering.py
eda/esmm/Model_pipline/feature_engineering.py
+6
-14
submit.sh
eda/esmm/Model_pipline/submit.sh
+2
-2
No files found.
eda/esmm/Model_pipline/feature_engineering.py
View file @
f8359d52
...
...
@@ -139,7 +139,7 @@ def feature_engineer():
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
6
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
100
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
...
...
@@ -204,7 +204,7 @@ def feature_engineer():
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_
AND_DISK
)
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_
ONLY_SER
)
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
...
...
@@ -267,8 +267,6 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"device_id"
,
"cid_id"
])
print
(
"pre test"
)
print
(
df
.
count
())
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
f
=
time
.
time
()
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
...
...
@@ -292,21 +290,16 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
value_map
.
get
(
x
[
29
],
15
)
]))
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_
AND_DISK
)
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_
ONLY_SER
)
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native csv"
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"native.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/",header = 'true')
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
write
.
format
(
"tfrecords"
)
\
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
\
.
save
(
path
=
path
+
"native/"
,
mode
=
"overwrite"
)
print
(
"native tfrecord done"
)
h
=
time
.
time
()
...
...
@@ -316,14 +309,13 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"nearby csv"
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"nearby.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# nearby_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"nearby/",header = 'true')
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
write
.
format
(
"tfrecords"
)
\
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
\
.
save
(
path
=
path
+
"nearby/"
,
mode
=
"overwrite"
)
print
(
"nearby tfrecord done"
)
...
...
eda/esmm/Model_pipline/submit.sh
View file @
f8359d52
...
...
@@ -19,11 +19,11 @@ echo "train..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
15
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
LOCAL_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
train
>
"
$LOCAL_PATH
/log/
$b_train
.log"
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
2
000
--field_size
=
15
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
LOCAL_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/native
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
infer
>
"
$LOCAL_PATH
/log/
$b_native
.log"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
8
000
--field_size
=
15
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
LOCAL_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/native
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
infer
>
"
$LOCAL_PATH
/log/
$b_native
.log"
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
2
000
--field_size
=
15
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
LOCAL_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/nearby
--hdfs_dir
=
${
HDFS_PATH
}
/nearby
--task_type
=
infer
>
"
$LOCAL_PATH
/log/
$b_nearby
.log"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
8
000
--field_size
=
15
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
LOCAL_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/nearby
--hdfs_dir
=
${
HDFS_PATH
}
/nearby
--task_type
=
infer
>
"
$LOCAL_PATH
/log/
$b_nearby
.log"
echo
"sort and 2sql"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_database.py
>
"
$LOCAL_PATH
/log/
$b_insert
.log"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment