Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
f837f92e
Commit
f837f92e
authored
Dec 06, 2019
by
高雅喆
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add stat_device_order_portrait_score_1106_1206
parent
21efd7bb
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
111 additions
and
0 deletions
+111
-0
stat_device_order_portrait_score.py
eda/smart_rank/stat_device_order_portrait_score.py
+111
-0
No files found.
eda/smart_rank/stat_device_order_portrait_score.py
0 → 100644
View file @
f837f92e
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
pymysql
import
smtplib
from
email.mime.text
import
MIMEText
from
email.utils
import
formataddr
from
email.mime.multipart
import
MIMEMultipart
from
email.mime.application
import
MIMEApplication
import
redis
import
datetime
from
pyspark
import
SparkConf
import
time
from
pyspark.sql
import
SparkSession
import
json
import
numpy
as
np
import
pandas
as
pd
from
pyspark.sql.functions
import
lit
from
pyspark.sql.functions
import
concat_ws
from
tool
import
*
def
get_user_service_portrait
(
x
,
all_word_tags
,
all_tag_tag_type
,
all_3tag_2tag
,
all_tags_name
,
size
=
None
,
pay_time
=
0
):
pay_time
=
x
[
0
]
cl_id
=
x
[
1
]
order_tag_id
=
x
[
2
]
user_df_service
=
get_user_log
(
cl_id
,
all_word_tags
,
pay_time
=
pay_time
)
# 增加df字段(days_diff_now, tag_type, tag2)
if
not
user_df_service
.
empty
:
user_df_service
[
"days_diff_now"
]
=
round
((
int
(
time
.
time
())
-
user_df_service
[
"time"
]
.
astype
(
float
))
/
(
24
*
60
*
60
))
user_df_service
[
"tag_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag_id"
]),
axis
=
1
)
user_df_service
=
user_df_service
[
user_df_service
[
'tag_type'
]
.
isin
([
'2'
,
'3'
])]
if
not
user_df_service
.
empty
:
user_log_df_tag2_list
=
user_df_service
[
user_df_service
[
'tag_type'
]
==
'2'
][
'tag_id'
]
.
unique
()
.
tolist
()
user_df_service
[
"tag2"
]
=
user_df_service
.
apply
(
lambda
x
:
get_tag2_from_tag3
(
x
.
tag_id
,
all_3tag_2tag
,
user_log_df_tag2_list
)
if
x
.
tag_type
==
'3'
else
x
.
tag_id
,
axis
=
1
)
user_df_service
[
"tag2_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag2"
]),
axis
=
1
)
# 算分及比例
user_df_service
[
"tag_score"
]
=
user_df_service
.
apply
(
lambda
x
:
compute_henqiang
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"henqiang"
else
(
compute_jiaoqiang
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"jiaoqiang"
else
(
compute_ai_scan
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ai_scan"
else
(
compute_ruoyixiang
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ruoyixiang"
else
compute_validate
(
x
.
days_diff_now
,
exponential
=
1
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)))),
axis
=
1
)
tag_score_sum
=
user_df_service
.
groupby
(
by
=
[
"tag2"
,
"tag2_type"
])
.
agg
(
{
'tag_score'
:
'sum'
,
'cl_id'
:
'first'
,
'action'
:
'first'
})
.
reset_index
()
.
sort_values
(
by
=
[
"tag_score"
],
ascending
=
False
)
tag_score_sum
[
'weight'
]
=
100
*
tag_score_sum
[
'tag_score'
]
/
tag_score_sum
[
'tag_score'
]
.
sum
()
tag_score_sum
[
"pay_type"
]
=
tag_score_sum
.
apply
(
lambda
x
:
3
if
x
.
action
==
"api/order/validate"
else
(
2
if
x
.
action
==
"api/settlement/alipay_callback"
else
1
),
axis
=
1
)
gmkv_tag_score2_sum
=
tag_score_sum
[[
"tag2"
,
"tag_score"
]][:
size
]
.
to_dict
(
'record'
)
gmkv_tag_score2_sum_dict
=
{
i
[
"tag2"
]:
i
[
"tag_score"
]
for
i
in
gmkv_tag_score2_sum
}
order_tag_id_score
=
gmkv_tag_score2_sum_dict
.
get
(
int
(
order_tag_id
),
0
)
if
not
portrait_result
:
order_tag_id_score
=
0
return
pay_time
,
cl_id
,
order_tag_id
,
order_tag_id_score
else
:
return
pay_time
,
cl_id
,
order_tag_id
,
0
# 获取近一个月设备下单的时间、设备id、标签id
def
get_device_order_info
(
start_timestamp
):
sql
=
"select distinct time, cl_id, tag_id from user_new_tag_log where action='api/settlement/alipay_callback' and time > {} and cl_id !=''"
.
format
(
start_timestamp
)
db_jerry_test
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
,
charset
=
'utf8'
)
cur_jerry_test
=
db_jerry_test
.
cursor
()
cur_jerry_test
.
execute
(
sql
)
data
=
list
(
cur_jerry_test
.
fetchall
())
return
data
# data
start_timestamp
=
1572969600
device_info
=
get_device_order_info
(
start_timestamp
)
# 获取搜索词及其近义词对应的tag
all_word_tags
=
get_all_word_tags
()
all_tag_tag_type
=
get_all_tag_tag_type
()
# 3级tag对应的2级tag
all_3tag_2tag
=
get_all_3tag_2tag
()
# 标签id对应的中文名称
all_tags_name
=
get_all_tags_name
()
# rdd
sparkConf
=
SparkConf
()
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
"true"
)
\
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
"true"
)
\
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
"false"
)
\
.
set
(
"spark.tispark.plan.allow_index_read"
,
"true"
)
\
.
set
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
\
.
set
(
"spark.tispark.pd.addresses"
,
"172.16.40.170:2379"
)
.
set
(
"spark.io.compression.codec"
,
"lzf"
)
\
.
set
(
"spark.driver.maxResultSize"
,
"8g"
)
.
set
(
"spark.sql.avro.compression.codec"
,
"snappy"
)
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
spark
.
sparkContext
.
addPyFile
(
"/srv/apps/ffm-baseline_git/eda/smart_rank/tool.py"
)
device_ids_lst_rdd
=
spark
.
sparkContext
.
parallelize
(
device_info
)
result
=
device_ids_lst_rdd
.
repartition
(
100
)
.
map
(
lambda
x
:
get_user_service_portrait
(
x
,
all_word_tags
,
all_tag_tag_type
,
all_3tag_2tag
,
all_tags_name
,
size
=
None
))
.
filter
(
lambda
x
:
x
is
not
None
)
print
(
result
.
count
())
print
(
result
.
take
(
10
))
df
=
spark
.
createDataFrame
(
result
)
.
na
.
drop
()
.
toDF
(
"device"
,
"search_words"
,
"user_portrait"
)
.
na
.
drop
()
.
toPandas
()
df
.
to_csv
(
"~/gyz/log/stat_device_order_portrait_score_1106_1206.csv"
,
index
=
False
)
spark
.
stop
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment