Commit f91f879b authored by 张彦钊's avatar 张彦钊

add

parent 1ebe3a7d
......@@ -129,7 +129,7 @@ def hospital():
"left join hippo_merchantrelevance b on api.id = b.doctor_id " \
"left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id " \
"where api.doctor_type = 1 and h.date = '{}' " \
"and budan.stat_date = '{}' limit 6;".format(date_str, date_tmp)
"and budan.stat_date = '{}';".format(date_str, date_tmp)
db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor()
......@@ -146,7 +146,7 @@ def hospital():
sql = "select merchant_id,doctor_ad_money_30_days," \
"service_pv_30,expert_pv_30,organization_pv_30,doctor_discount_30_days from statistic_merchant_rank_factor " \
"where partition_date = '{}' limit 6;".format(date_str)
"where partition_date = '{}';".format(date_str)
cursor = db.cursor()
cursor.execute(sql)
......@@ -158,34 +158,34 @@ def hospital():
tmp = tmp.rename(columns=dict(zip(list(range(len(name))), name)))
print(tmp.head(6))
# df["merchant_id"] = df["merchant_id"].astype("str")
# tmp["merchant_id"] = tmp["merchant_id"].astype("str")
# df = pd.merge(df, tmp, on='merchant_id')
#
# for i in ["hospital_exposure_pv_30","service_exposure_pv_30","expert_exposure_pv_30",
# "service_ctr_30","hospital_ctr_30","expert_ctr_30",
# "doctor_ad_money_30_days", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30", "budan_payment_30_days","doctor_discount_30_days"]:
# df[i] = df[i].astype("float")
#
# df["all_exposure"] = df["hospital_exposure_pv_30"] + df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
# df = df[~df["all_exposure"].isin([0.0])]
# df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
# df = df[~df["tmp"].isin([0.0])]
# print("aaaaaaaa")
# df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
# df["hospital_exposure_pv_30"]/ df["all_exposure"] * df["hospital_ctr_30"] + \
# df["expert_exposure_pv_30"]/df["all_exposure"] * df["expert_ctr_30"]
# df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
# df["cpt"] = df["doctor_discount_30_days"]/df["tmp"]
# df["score"] = df["ctr"]**0.5 * (df["commission"] + df["cpt"])
# columns = ["score","ctr","commission","cpt","hospital_exposure_pv_30","service_exposure_pv_30",
# "expert_exposure_pv_30",
# "service_ctr_30","hospital_ctr_30","expert_ctr_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30"]
# data = df.loc[:, columns]
# print(data.head(6))
# data.to_csv('/home/gmuser/hospital.csv',index=False)
df["merchant_id"] = df["merchant_id"].astype("str")
tmp["merchant_id"] = tmp["merchant_id"].astype("str")
df = pd.merge(df, tmp, on='merchant_id')
for i in ["hospital_exposure_pv_30","service_exposure_pv_30","expert_exposure_pv_30",
"service_ctr_30","hospital_ctr_30","expert_ctr_30",
"doctor_ad_money_30_days", "service_pv_30",
"mexpert_pv_30", "organization_pv_30", "budan_payment_30_days","doctor_discount_30_days"]:
df[i] = df[i].astype("float")
df["all_exposure"] = df["hospital_exposure_pv_30"] + df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
df = df[~df["all_exposure"].isin([0.0])]
df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
df = df[~df["tmp"].isin([0.0])]
print("aaaaaaaa")
df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
df["hospital_exposure_pv_30"]/ df["all_exposure"] * df["hospital_ctr_30"] + \
df["expert_exposure_pv_30"]/df["all_exposure"] * df["expert_ctr_30"]
df["commission"] = (df["doctor_ad_money_30_days"] + df["budan_payment_30_days"])/df["tmp"]
df["cpt"] = df["doctor_discount_30_days"]/df["tmp"]
df["score"] = df["ctr"]**0.5 * (df["commission"] + df["cpt"])
columns = ["score","ctr","commission","cpt","hospital_exposure_pv_30","service_exposure_pv_30",
"expert_exposure_pv_30",
"service_ctr_30","hospital_ctr_30","expert_ctr_30", "service_pv_30",
"mexpert_pv_30", "organization_pv_30"]
data = df.loc[:, columns]
print(data.head(6))
data.to_csv('/home/gmuser/hospital.csv',index=False)
if __name__ == "__main__":
hospital()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment