Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
fb95c89f
Commit
fb95c89f
authored
May 05, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
修改测试文件
parent
3f37c5ce
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
29 deletions
+11
-29
multi.py
tensnsorflow/multi.py
+11
-29
No files found.
tensnsorflow/multi.py
View file @
fb95c89f
...
...
@@ -38,7 +38,7 @@ def feature_engineer():
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
3
00
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
3
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
...
...
@@ -107,11 +107,9 @@ def feature_engineer():
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
x
[
18
],
x
[
19
]))
# spark.createDataFrame(test).write.csv('/recommend/va', mode='overwrite', header=True
)
# spark.createDataFrame(train).write.csv('/recommend/tr', mode='overwrite', header=True
)
spark
.
createDataFrame
(
test
)
.
write
.
format
(
"avro"
)
.
save
(
path
=
"/recommend/va"
,
mode
=
"overwrite"
)
spark
.
createDataFrame
(
train
)
.
write
.
format
(
"avro"
)
.
save
(
path
=
"/recommend/tr"
,
mode
=
"overwrite"
)
a
=
spark
.
createDataFrame
(
train
)
.
toPandas
()
print
(
a
.
shape
)
print
(
"done"
)
rdd
.
unpersist
()
...
...
@@ -161,7 +159,8 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native"
)
print
(
native_pre
.
count
())
native_pre
.
write
.
csv
(
'/recommend'
,
mode
=
'overwrite'
,
header
=
True
)
native_pre
.
write
.
format
(
"avro"
)
.
save
(
path
=
"/recommend"
,
mode
=
"overwrite"
)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
6
]
==
0
)
.
map
(
lambda
x
:
(
x
[
0
],
x
[
1
],
x
[
2
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
...
...
@@ -169,13 +168,13 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
.
toDF
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"top"
,
"stat_date"
)
.
write
.
csv
(
'/recommend/native'
,
mode
=
'overwrite'
,
header
=
True
)
"recover_time"
,
"top"
,
"stat_date"
)
.
write
.
format
(
"avro"
)
.
save
(
path
=
"/recommend/native"
,
mode
=
"overwrite"
)
nearby_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
6
]
==
1
)
.
map
(
lambda
x
:
(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"nearby"
)
print
(
nearby_pre
.
count
())
nearby_pre
.
write
.
csv
(
'/recommend'
,
mode
=
'overwrite'
,
header
=
True
)
nearby_pre
.
write
.
format
(
"avro"
)
.
save
(
path
=
"/recommend"
,
mode
=
"overwrite"
)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
6
]
==
1
)
.
map
(
lambda
x
:
(
x
[
0
],
x
[
1
],
x
[
2
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
...
...
@@ -183,7 +182,7 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
.
toDF
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"top"
,
"stat_date"
)
.
write
.
csv
(
'/recommend/nearby'
,
mode
=
'overwrite'
,
header
=
True
)
"recover_time"
,
"top"
,
"stat_date"
)
.
write
.
format
(
"avro"
)
.
save
(
path
=
"/recommend/nearby"
,
mode
=
"overwrite"
)
rdd
.
unpersist
()
...
...
@@ -203,7 +202,6 @@ def test():
df
.
show
(
6
)
df
.
write
.
format
(
"avro"
)
.
save
(
path
=
"/recommend/tr"
,
mode
=
"overwrite"
)
# from hdfs import InsecureClient
# from hdfs.ext.dataframe import read_dataframe
# client = InsecureClient('http://nvwa01:50070')
...
...
@@ -221,22 +219,6 @@ def test():
# spark.sql("select cl_type from online.tl_hdfs_maidian_view where partition_date = '20190312' limit 6").show()
# data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2), (5, 9.2), (6, 14.4)]
# df = spark.createDataFrame(data, ["id", "hour"])
# df.show(6)
# t = df.rdd.map(lambda x:x[0]).collect()
# print(t)
# validate_date = spark.sql("select max(stat_date) from esmm_train_data").rdd.map(lambda x: str(x[0]))
# print(validate_date.count())
# print("validate_date:" + validate_date)
# temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
# start = (temp - datetime.timedelta(days=10)).strftime("%Y-%m-%d")
# print(start)
if
__name__
==
'__main__'
:
sparkConf
=
SparkConf
()
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
"true"
)
\
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
"true"
)
\
...
...
@@ -251,9 +233,9 @@ if __name__ == '__main__':
ti
.
tidbMapDatabase
(
"jerry_test"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
# validate_date, value_map, app_list_map, leve2_map, leve3_map = feature_engineer()
# get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
test
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment