Commit 2f8161ed authored by Ross Girshick's avatar Ross Girshick Committed by facebook-github-bot

Initial commit

fbshipit-source-id: d6798bb3ead07e6e3da5edebc53b946e6cfa0807
parents
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# Shared objects
*.so
# Distribution / packaging
lib/build/
*.egg-info/
*.egg
# Temporary files
*.swn
*.swo
*.swp
# Dataset symlinks
lib/datasets/data/*
!lib/datasets/data/README.md
# Generated C files
lib/utils/cython_*.c
# Contributing to Detectron
We want to make contributing to this project as easy and transparent as
possible.
## Our Development Process
Minor changes and improvements will be released on an ongoing basis. Larger
changes (e.g., changesets implementing a new paper) will be released on a more
periodic basis.
## Pull Requests
We actively welcome your pull requests.
1. Fork the repo and create your branch from `master`.
2. If you've added code that should be tested, add tests.
3. If you've changed APIs, update the documentation.
4. Ensure the test suite passes.
5. Make sure your code lints.
6. Ensure no regressions in baseline model speed and accuracy.
7. If you haven't already, complete the Contributor License Agreement ("CLA").
## Contributor License Agreement ("CLA")
In order to accept your pull request, we need you to submit a CLA. You only need
to do this once to work on any of Facebook's open source projects.
Complete your CLA here: <https://code.facebook.com/cla>
## Issues
GitHub issues will be largely unattended and are mainly intended as a community
forum for collectively debugging issues, hopefully leading to pull requests with
fixes when appropriate.
## Coding Style
* 4 spaces for indentation rather than tabs
* 80 character line length
* PEP8 formatting
## License
By contributing to Detectron, you agree that your contributions will be licensed
under the LICENSE file in the root directory of this source tree.
# FAQ
This document covers frequently asked questions.
- For general information about Detectron, please see [`README.md`](README.md).
- For installation instructions, please see [`INSTALL.md`](INSTALL.md).
- For a quick getting started guide, please see [`GETTING_STARTED.md`](GETTING_STARTED.md).
#### Q: How do I compute validation AP during training?
**A:** Detectron does not compute validation statistics (e.g., AP) during training because this slows training. Instead, we've implemented a "validation monitor", which is a process that polls for new model checkpoints saved by a training job and when one is found performs inference with it by scheduling a job with `tools/test_net.py` asynchronously using free GPUs in our cluster. We have not released the validation monitor because (1) it's a relatively thin wrapper on top of `tools/train_net.py` and (2) the little code that comprises it is specific to our cluster and would not be generally useful.
#### Q: How do I restrict Detectron to use only a subset of the GPUs on a server?
**A:** Don't modify the code; use the [`CUDA_VISIBLE_DEVICES`](http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) environment variable instead.
#### Q: Detection on one image is really slow compared to the reported performance, why?
A: Various algorithms and caches (e.g., from `cudnn`) take some time to warm up. Peak inference performance will not be reached until after a few images have been processed.
Also potentially relevant: inference with Mask R-CNN on high-resolution images may be slow simply because substantial time is spent upsampling the predicted masks to the original image resolution (this has not been optimized). You can diagnose this issue if the `misc_mask` time reported by `tools/infer_simple.py` is high (e.g., much more than 20-90ms). The solution is to first resize your images such that the short side is around 600-800px (the exact choice does not matter) and then run inference on the resized image.
#### Q: How do I implement a custom Caffe2 CPU or GPU operator for use in Detectron?
**A:** Detectron uses a number of specialized Caffe2 operators that are distributed via the [Caffe2 Detectron module](https://github.com/caffe2/caffe2/tree/master/modules/detectron) as part of the core Caffe2 GitHub repository. If you'd like to implement a custom Caffe2 operator for your project, we have written a toy example illustrating how to add an operator under the Detectron source tree; please see [`lib/ops/zero_even_op.*`](lib/ops/) and [`tests/test_zero_even_op.py`](tests/test_zero_even_op.py). For more background on writing Caffe2 operators please consult the [Caffe2 documentation](https://caffe2.ai/docs/custom-operators.html).
#### Q: How do I use Detectron to train a model on a custom dataset?
**A:** If possible, we strongly recommend that you first convert the custom dataset annotation format to the [COCO API json format](http://cocodataset.org/#download). Then, add your dataset to the [dataset catalog](lib/datasets/dataset_catalog.py) so that Detectron can use it for training and inference. If your dataset cannot be converted to the COCO API json format, then it's likely that more significant code modifications will be required. If the dataset you're adding is popular, please consider making the converted annotations publicly available; If code modifications are required, please consider submitting a pull request.
# Using Detectron
This document provides brief tutorials covering Detectron for inference and training on the COCO dataset.
- For general information about Detectron, please see [`README.md`](README.md).
- For installation instructions, please see [`INSTALL.md`](INSTALL.md).
## Inference with Pretrained Models
#### 1. Directory of Image Files
To run inference on a directory of image files (`demo/*.jpg` in this example), you can use the `infer_simple.py` tool. In this example, we're using an end-to-end trained Mask R-CNN model with a ResNet-101-FPN backbone from the model zoo:
```
python2 tools/infer_simple.py \
--cfg configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
--output-dir /tmp/detectron-visualizations \
--image-ext jpg \
--wts https://s3-us-west-2.amazonaws.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train:coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
demo
```
Detectron should automatically download the model from the URL specified by the `--wts` argument. This tool will output visualizations of the detections in PDF format in the directory specified by `--output-dir`. Here's an example of the output you should expect to see (for copyright information about the demo images see [`demo/NOTICE`](demo/NOTICE)).
<div align="center">
<img src="demo/output/17790319373_bd19b24cfc_k_example_output.jpg" width="700px" />
<p>Example Mask R-CNN output.</p>
</div>
**Notes:**
- When running inference on your own high-resolution images, Mask R-CNN may be slow simply because substantial time is spent upsampling the predicted masks to the original image resolution (this has not been optimized). You can diagnose this issue if the `misc_mask` time reported by `tools/infer_simple.py` is high (e.g., much more than 20-90ms). The solution is to first resize your images such that the short side is around 600-800px (the exact choice does not matter) and then run inference on the resized image.
#### 2. COCO Dataset
This example shows how to run an end-to-end trained Mask R-CNN model from the model zoo using a single GPU for inference. As configured, this will run inference on all images in `coco_2014_minival` (which must be properly installed).
```
python2 tools/test_net.py \
--cfg configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
TEST.WEIGHTS https://s3-us-west-2.amazonaws.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train:coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
NUM_GPUS 1
```
Running inference with the same model using `$N` GPUs (e.g., `N=8`).
```
python2 tools/test_net.py \
--cfg configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
--multi-gpu-testing \
TEST.WEIGHTS https://s3-us-west-2.amazonaws.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train:coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
NUM_GPUS $N
```
On an NVIDIA Tesla P100 GPU, inference should take about 130-140 ms per image for this example.
## Training a Model with Detectron
This is a tiny tutorial showing how to train a model on COCO. The model will be an end-to-end trained Faster R-CNN using a ResNet-50-FPN backbone. For the purpose of this tutorial, we'll use a short training schedule and a small input image size so that training and inference will be relatively fast. As a result, the box AP on COCO will be relatively low compared to our [baselines](MODEL_ZOO.md). This example is provided for instructive purposes only (i.e., not for comparing against publications).
#### 1. Training with 1 GPU
```
python2 tools/train_net.py \
--cfg configs/getting_started/tutorial_1gpu_e2e_faster_rcnn_R-50-FPN.yaml \
OUTPUT_DIR /tmp/detectron-output
```
**Expected results:**
- Output (models, validation set detections, etc.) will be saved under `/tmp/detectron-output`
- On a Maxwell generation GPU (e.g., M40), training should take around 4.2 hours
- Inference time should be around 80ms / image (also on an M40)
- Box AP on `coco_2014_minival` should be around 22.1% (+/- 0.1% stdev measured over 3 runs)
### 2. Multi-GPU Training
We've also provided configs to illustrate training with 2, 4, and 8 GPUs using learning schedules that will be approximately equivalent to the one used with 1 GPU above. The configs are located at: `configs/getting_started/tutorial_{2,4,8}gpu_e2e_faster_rcnn_R-50-FPN.yaml`. For example, launching a training job with 2 GPUs will look like this:
```
python2 tools/train_net.py \
--multi-gpu-testing \
--cfg configs/getting_started/tutorial_2gpu_e2e_faster_rcnn_R-50-FPN.yaml \
OUTPUT_DIR /tmp/detectron-output
```
Note that we've also added the `--multi-gpu-testing` flag to instruct Detectron to parallelize inference over multiple GPUs (2 in this example; see `NUM_GPUS` in the config file) after training has finished.
**Expected results:**
- Training should take around 2.3 hours (2 x M40)
- Inference time should be around 80ms / image (but in parallel on 2 GPUs, so half the total time)
- Box AP on `coco_2014_minival` should be around 22.1% (+/- 0.1% stdev measured over 3 runs)
To understand how learning schedules are adjusted (the "linear scaling rule"), please study these tutorial config files and read our paper [Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677). **Aside from this tutorial, all of our released configs make use of 8 GPUs. If you will be using fewer than 8 GPUs for training (or do anything else that changes the minibatch size), it is essential that you understand how to manipulate training schedules according to the linear scaling rule.**
**Notes:**
- This training example uses a relatively low GPU-compute model and thus overhead from Caffe2 Python ops is relatively high. As a result, scaling as the number of GPUs is increased from 2 to 8 is relatively poor (e.g., training with 8 GPUs takes about 0.9 hours, only 4.5x faster than with 1 GPU). As larger, more GPU-compute heavy models are used, the scaling improves.
# Installing Detectron
This document covers how to install Detectron, its dependencies (including Caffe2), and the COCO dataset.
- For general information about Detectron, please see [`README.md`](README.md).
**Requirements:**
- NVIDIA GPU, Linux, Python2
- Caffe2, various standard Python packages, and the COCO API; Instructions for installing these dependencies are found below
**Notes:**
- Detectron operators currently do not have CPU implementation; a GPU system is required.
- Detectron has been tested extensively with CUDA 8.0 and cuDNN 6.0.21.
## Caffe2
To install Caffe2 with CUDA support, follow the [installation instructions](https://caffe2.ai/docs/getting-started.html) from the [Caffe2 website](https://caffe2.ai/). **If you already have Caffe2 installed, make sure to update your Caffe2 to a version that includes the [Detectron module](https://github.com/caffe2/caffe2/tree/master/modules/detectron).**
Please ensure that your Caffe2 installation was successful before proceeding by running the following commands and checking their output as directed in the comments.
```
# To check if Caffe2 build was successful
python2 -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"
# To check if Caffe2 GPU build was successful
# This must print a number > 0 in order to use Detectron
python2 -c 'from caffe2.python import workspace; print(workspace.NumCudaDevices())'
```
If the `caffe2` Python package is not found, you likely need to adjust your `PYTHONPATH` environment variable to include its location (`/path/to/caffe2/build`, where `build` is the Caffe2 CMake build directory).
## Other Dependencies
Install Python dependencies:
```
pip install numpy pyyaml matplotlib opencv-python>=3.0 setuptools Cython mock
```
Install the [COCO API](https://github.com/cocodataset/cocoapi):
```
# COCOAPI=/path/to/clone/cocoapi
git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
cd $COCOAPI/PythonAPI
# Install into global site-packages
make install
# Alternatively, if you do not have permissions or prefer
# not to install the COCO API into global site-packages
python2 setup.py install --user
```
Note that instructions like `# COCOAPI=/path/to/install/cocoapi` indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (`COCOAPI` in this case) accordingly.
## Detectron
Clone the Detectron repository:
```
# DETECTRON=/path/to/clone/detectron
git clone https://github.com/facebookresearch/detectron $DETECTRON
```
Set up Python modules:
```
cd $DETECTRON/lib && make
```
Check that Detectron tests pass (e.g. for [`SpatialNarrowAsOp test`](tests/test_spatial_narrow_as_op.py)):
```
python2 $DETECTRON/tests/test_spatial_narrow_as_op.py
```
## That's All You Need for Inference
At this point, you can run inference using pretrained Detectron models. Take a look at our [inference tutorial](GETTING_STARTED.md) for an example. If you want to train models on the COCO dataset, then please continue with the installation instructions.
## Datasets
Detectron finds datasets via symlinks from `lib/datasets/data` to the actual locations where the dataset images and annotations are stored. For instructions on how to create symlinks for COCO and other datasets, please see [`lib/datasets/data/README.md`](lib/datasets/data/README.md).
After symlinks have been created, that's all you need to start training models.
## Advanced Topic: Custom Operators for New Research Projects
Please read the custom operators section of the [`FAQ`](FAQ.md) first.
For convenience, we provide CMake support for building custom operators. All custom operators are built into a single library that can be loaded dynamically from Python.
Place your custom operator implementation under [`lib/ops/`](lib/ops/) and see [`tests/test_zero_even_op.py`](tests/test_zero_even_op.py) for an example of how to load custom operators from Python.
Build the custom operators library:
```
cd $DETECTRON/lib && make ops
```
Check that the custom operator tests pass:
```
python2 $DETECTRON/tests/test_zero_even_op.py
```
## Docker Image
We provide a [`Dockerfile`](docker/Dockerfile) that you can use to build a Detectron image on top of a Caffe2 image that satisfies the requirements outlined at the top. If you're using a prebuilt Caffe2 image (e.g. from the [docker repo](https://hub.docker.com/r/caffe2ai/caffe2/)), please make sure that it includes the [Detectron module](https://github.com/caffe2/caffe2/tree/master/modules/detectron). We also provide an example of how to build an up-to-date Caffe2 image.
Build a Caffe2 image:
```
cd /path/to/caffe2/docker/ubuntu-16.04-cuda8-cudnn6-all-options
# Use the latest Caffe2 master
sed -i -e 's/ --branch v0.8.1//g' Dockerfile
docker build -t caffe2:cuda8-cudnn6-all-options .
```
Build a Detectron image:
```
cd $DETECTRON/docker
docker build -t detectron:c2-cuda8-cudnn6 .
```
Run the Detectron image (e.g. for [`BatchPermutationOp test`](tests/test_batch_permutation_op.py)):
```
nvidia-docker run --rm -it detectron:c2-cuda8-cudnn6 python2 tests/test_batch_permutation_op.py
```
## Troubleshooting
In case of Caffe2 installation problems, please read the troubleshooting section of the relevant Caffe2 [installation instructions](https://caffe2.ai/docs/getting-started.html) first. In the following, we provide additional troubleshooting tips for Caffe2 and Detectron.
### Caffe2 Operator Profiling
Caffe2 comes with performance [`profiling`](https://github.com/caffe2/caffe2/tree/master/caffe2/contrib/prof)
support which you may find useful for benchmarking or debugging your operators
(see [`BatchPermutationOp test`](tests/test_batch_permutation_op.py) for example usage).
Profiling support is not built by default and you can enable it by setting
the `-DUSE_PROF=ON` flag when running Caffe2 CMake.
### CMake Cannot Find CUDA and cuDNN
Sometimes CMake has trouble with finding CUDA and cuDNN dirs on your machine.
When building Caffe2, you can point CMake to CUDA and cuDNN dirs by running:
```
cmake .. \
# insert your Caffe2 CMake flags here
-DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda/toolkit/dir \
-DCUDNN_ROOT_DIR=/path/to/cudnn/root/dir
```
Similarly, when building custom Detectron operators you can use:
```
cd $DETECTRON/lib
mkdir -p build && cd build
cmake .. \
-DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda/toolkit/dir \
-DCUDNN_ROOT_DIR=/path/to/cudnn/root/dir
make
```
Note that you can use the same commands to get CMake to use specific versions of CUDA and cuDNN out of possibly multiple versions installed on your machine.
### Protobuf Errors
Caffe2 uses protobuf as its serialization format and requires version `3.2.0` or newer.
If your protobuf version is older, you can build protobuf from Caffe2 protobuf submodule and use that version instead.
To build Caffe2 protobuf submodule:
```
# CAFFE2=/path/to/caffe2
cd $CAFFE2/third_party/protobuf/cmake
mkdir -p build && cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=$HOME/c2_tp_protobuf \
-Dprotobuf_BUILD_TESTS=OFF \
-DCMAKE_CXX_FLAGS="-fPIC"
make install
```
To point Caffe2 CMake to the newly built protobuf:
```
cmake .. \
# insert your Caffe2 CMake flags here
-DPROTOBUF_PROTOC_EXECUTABLE=$HOME/c2_tp_protobuf/bin/protoc \
-DPROTOBUF_INCLUDE_DIR=$HOME/c2_tp_protobuf/include \
-DPROTOBUF_LIBRARY=$HOME/c2_tp_protobuf/lib64/libprotobuf.a
```
You may also experience problems with protobuf if you have both system and anaconda packages installed.
This could lead to problems as the versions could be mixed at compile time or at runtime.
This issue can also be overcome by following the commands from above.
### Caffe2 Python Binaries
In case you experience issues with CMake being unable to find the required Python paths when
building Caffe2 Python binaries (e.g. in virtualenv), you can try pointing Caffe2 CMake to python
library and include dir by using:
```
cmake .. \
# insert your Caffe2 CMake flags here
-DPYTHON_LIBRARY=$(python2 -c "from distutils import sysconfig; print(sysconfig.get_python_lib())") \
-DPYTHON_INCLUDE_DIR=$(python2 -c "from distutils import sysconfig; print(sysconfig.get_python_inc())")
```
### Caffe2 with NNPACK Build
Detectron does not require Caffe2 built with NNPACK support. If you face NNPACK related issues during Caffe2 installation, you can safely disable NNPACK by setting the `-DUSE_NNPACK=OFF` CMake flag.
### Caffe2 with OpenCV Build
Analogously to the NNPACK case above, you can disable OpenCV by setting the `-DUSE_OPENCV=OFF` CMake flag.
### COCO API Undefined Symbol Error
If you encounter a COCO API import error due to an undefined symbol, as reported [here](https://github.com/cocodataset/cocoapi/issues/35),
make sure that your python versions are not getting mixed. For instance, this issue may arise if you have
[both system and conda numpy installed](https://stackoverflow.com/questions/36190757/numpy-undefined-symbol-pyfpe-jbuf).
### CMake Cannot Find Caffe2
In case you experience issues with CMake being unable to find the Caffe2 package when building custom operators,
make sure you have run `make install` as part of your Caffe2 installation process.
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
Portions of this software are derived from py-faster-rcnn.
==============================================================================
py-faster-rcnn licence
==============================================================================
Faster R-CNN
The MIT License (MIT)
Copyright (c) 2015 Microsoft Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
# Detectron
Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including [Mask R-CNN](https://arxiv.org/abs/1703.06870). It is written in Python and powered by the [Caffe2](https://github.com/caffe2/caffe2) deep learning framework.
At FAIR, Detectron has enabled numerous research projects, including: [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144), [Mask R-CNN](https://arxiv.org/abs/1703.06870), [Detecting and Recognizing Human-Object Interactions](https://arxiv.org/abs/1704.07333), [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002), [Non-local Neural Networks](https://arxiv.org/abs/1711.07971), [Learning to Segment Every Thing](https://arxiv.org/abs/1711.10370), and [Data Distillation: Towards Omni-Supervised Learning](https://arxiv.org/abs/1712.04440).
<div align="center">
<img src="demo/output/33823288584_1d21cf0a26_k_example_output.jpg" width="700px" />
<p>Example Mask R-CNN output.</p>
</div>
## Introduction
The goal of Detectron is to provide a high-quality, high-performance
codebase for object detection *research*. It is designed to be flexible in order
to support rapid implementation and evaluation of novel research. Detectron
includes implementations of the following object detection algorithms:
- [Mask R-CNN](https://arxiv.org/abs/1703.06870) -- *Marr Prize at ICCV 2017*
- [RetinaNet](https://arxiv.org/abs/1708.02002) -- *Best Student Paper Award at ICCV 2017*
- [Faster R-CNN](https://arxiv.org/abs/1506.01497)
- [RPN](https://arxiv.org/abs/1506.01497)
- [Fast R-CNN](https://arxiv.org/abs/1504.08083)
- [R-FCN](https://arxiv.org/abs/1605.06409)
using the following backbone network architectures:
- [ResNeXt{50,101,152}](https://arxiv.org/abs/1611.05431)
- [ResNet{50,101,152}](https://arxiv.org/abs/1512.03385)
- [Feature Pyramid Networks](https://arxiv.org/abs/1612.03144) (with ResNet/ResNeXt)
- [VGG16](https://arxiv.org/abs/1409.1556)
Additional backbone architectures may be easily implemented. For more details about these models, please see [References](#references) below.
## License
Detectron is released under the [Apache 2.0 license](https://github.com/facebookresearch/detectron/blob/master/LICENSE). See the [NOTICE](https://github.com/facebookresearch/detectron/blob/master/NOTICE) file for additional details.
## Citing Detectron
If you use Detectron in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
```
@misc{Detectron2018,
author = {Ross Girshick and Ilija Radosavovic and Georgia Gkioxari and
Piotr Doll\'{a}r and Kaiming He},
title = {Detectron},
howpublished = {\url{https://github.com/facebookresearch/detectron}},
year = {2018}
}
```
## Model Zoo and Baselines
We provide a large set of baseline results and trained models available for download in the [Detectron Model Zoo](MODEL_ZOO.md).
## Installation
Please find installation instructions for Caffe2 and Detectron in [`INSTALL.md`](INSTALL.md).
## Quick Start: Using Detectron
After installation, please see [`GETTING_STARTED.md`](GETTING_STARTED.md) for brief tutorials covering inference and training with Detectron.
## Getting Help
To start, please check the [troubleshooting](INSTALL.md#troubleshooting) section of our installation instructions as well as our [FAQ](FAQ.md). If you couldn't find help there, try searching our GitHub issues. We intend the issues page to be a forum in which the community collectively troubleshoots problems.
If bugs are found, **we appreciate pull requests** (including adding Q&A's to `FAQ.md` and improving our installation instructions and troubleshooting documents). Please see [CONTRIBUTING.md](CONTRIBUTING.md) for more information about contributing to Detectron.
## References
- [Data Distillation: Towards Omni-Supervised Learning](https://arxiv.org/abs/1712.04440).
Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, and Kaiming He.
Tech report, arXiv, Dec. 2017.
- [Learning to Segment Every Thing](https://arxiv.org/abs/1711.10370).
Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, and Ross Girshick.
Tech report, arXiv, Nov. 2017.
- [Non-Local Neural Networks](https://arxiv.org/abs/1711.07971).
Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He.
Tech report, arXiv, Nov. 2017.
- [Mask R-CNN](https://arxiv.org/abs/1703.06870).
Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
IEEE International Conference on Computer Vision (ICCV), 2017.
- [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002).
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
IEEE International Conference on Computer Vision (ICCV), 2017.
- [Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677).
Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He.
Tech report, arXiv, June 2017.
- [Detecting and Recognizing Human-Object Interactions](https://arxiv.org/abs/1704.07333).
Georgia Gkioxari, Ross Girshick, Piotr Dollár, and Kaiming He.
Tech report, arXiv, Apr. 2017.
- [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144).
Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431).
Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [R-FCN: Object Detection via Region-based Fully Convolutional Networks](http://arxiv.org/abs/1605.06409).
Jifeng Dai, Yi Li, Kaiming He, and Jian Sun.
Conference on Neural Information Processing Systems (NIPS), 2016.
- [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385).
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](http://arxiv.org/abs/1506.01497)
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Conference on Neural Information Processing Systems (NIPS), 2015.
- [Fast R-CNN](http://arxiv.org/abs/1504.08083).
Ross Girshick.
IEEE International Conference on Computer Vision (ICCV), 2015.
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v0upshare
RESOLUTION: 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default: GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v0upshare
RESOLUTION: 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default: GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet152_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1.44x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 260000
STEPS: [0, 200000, 240000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (640, 672, 704, 736, 768, 800) # Scale jitter
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
BBOX_VOTE:
ENABLED: True
VOTE_TH: 0.9
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
BBOX_AUG:
ENABLED: True
SCORE_HEUR: UNION
COORD_HEUR: UNION
H_FLIP: True
SCALES: (400, 500, 600, 700, 900, 1000, 1100, 1200)
MAX_SIZE: 2000
SCALE_H_FLIP: True
SCALE_SIZE_DEP: False
ASPECT_RATIOS: ()
ASPECT_RATIO_H_FLIP: False
MASK_AUG:
ENABLED: True
HEUR: SOFT_AVG
H_FLIP: True
SCALES: (400, 500, 600, 700, 900, 1000, 1100, 1200)
MAX_SIZE: 2000
SCALE_H_FLIP: True
SCALE_SIZE_DEP: False
ASPECT_RATIOS: ()
ASPECT_RATIO_H_FLIP: False
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_train/rpn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_valminusminival/rpn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_minival/rpn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_train/rpn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_valminusminival/rpn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_minival/rpn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999521/12_2017_baselines/rpn_person_only_R-101-FPN_1x.yaml.08_20_33.1OkqMmqP/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35999521/12_2017_baselines/rpn_person_only_R-101-FPN_1x.yaml.08_20_33.1OkqMmqP/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999521/12_2017_baselines/rpn_person_only_R-101-FPN_1x.yaml.08_20_33.1OkqMmqP/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999521/12_2017_baselines/rpn_person_only_R-101-FPN_1x.yaml.08_20_33.1OkqMmqP/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35999521/12_2017_baselines/rpn_person_only_R-101-FPN_1x.yaml.08_20_33.1OkqMmqP/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999521/12_2017_baselines/rpn_person_only_R-101-FPN_1x.yaml.08_20_33.1OkqMmqP/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760438/12_2017_baselines/rpn_person_only_X-101-32x8d-FPN_1x.yaml.06_04_23.M2oJlDPW/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/36760438/12_2017_baselines/rpn_person_only_X-101-32x8d-FPN_1x.yaml.06_04_23.M2oJlDPW/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760438/12_2017_baselines/rpn_person_only_X-101-32x8d-FPN_1x.yaml.06_04_23.M2oJlDPW/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760438/12_2017_baselines/rpn_person_only_X-101-32x8d-FPN_1x.yaml.06_04_23.M2oJlDPW/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/36760438/12_2017_baselines/rpn_person_only_X-101-32x8d-FPN_1x.yaml.06_04_23.M2oJlDPW/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760438/12_2017_baselines/rpn_person_only_X-101-32x8d-FPN_1x.yaml.06_04_23.M2oJlDPW/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999553/12_2017_baselines/rpn_person_only_X-101-64x4d-FPN_1x.yaml.08_21_33.ghFzzArr/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35999553/12_2017_baselines/rpn_person_only_X-101-64x4d-FPN_1x.yaml.08_21_33.ghFzzArr/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999553/12_2017_baselines/rpn_person_only_X-101-64x4d-FPN_1x.yaml.08_21_33.ghFzzArr/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 130000
STEPS: [0, 100000, 120000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: head_builder.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999553/12_2017_baselines/rpn_person_only_X-101-64x4d-FPN_1x.yaml.08_21_33.ghFzzArr/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35999553/12_2017_baselines/rpn_person_only_X-101-64x4d-FPN_1x.yaml.08_21_33.ghFzzArr/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35999553/12_2017_baselines/rpn_person_only_X-101-64x4d-FPN_1x.yaml.08_21_33.ghFzzArr/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998887/12_2017_baselines/rpn_R-101-FPN_1x.yaml.08_07_07.vzhHEs0V/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v0upshare
RESOLUTION: 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default: GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_train/rpn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_valminusminival/rpn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_minival/rpn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
RPN:
SIZES: (32, 64, 128, 256, 512)
FAST_RCNN:
ROI_BOX_HEAD: ResNet.add_ResNet_roi_conv5_head
ROI_XFORM_METHOD: RoIAlign
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v0upshare
RESOLUTION: 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default: GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_train/rpn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_valminusminival/rpn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L/output/test/coco_2014_minival/rpn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/36760102/12_2017_baselines/rpn_X-101-32x8d-FPN_1x.yaml.06_00_16.RWeBAniO/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
# 2x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 360000
STEPS: [0, 240000, 320000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
# md5sum of weights pkl file: aa14062280226e48f569ef1c7212e7c7
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (800,)
MAX_SIZE: 1333
IMS_PER_BATCH: 1
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998956/12_2017_baselines/rpn_X-101-64x4d-FPN_1x.yaml.08_08_41.Seh0psKz/output/test/coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: retinanet
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 7
RPN_MIN_LEVEL: 3
COARSEST_STRIDE: 128
EXTRA_CONV_LEVELS: True
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
RETINANET:
RETINANET_ON: True
NUM_CONVS: 4
ASPECT_RATIOS: (1.0, 2.0, 0.5)
SCALES_PER_OCTAVE: 3
ANCHOR_SCALE: 4
LOSS_GAMMA: 2.0
LOSS_ALPHA: 0.25
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_STRADDLE_THRESH: -1 # default 0
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 10000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('coco_2014_minival','coco_2014_train','coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: rpn
CONV_BODY: ResNet.add_ResNet50_conv4_body
NUM_CLASSES: 81
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
RPN:
SIZES: (32, 64, 128, 256, 512)
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('coco_2014_minival','coco_2014_train','coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
USE_NCCL: False
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('coco_2014_minival','coco_2014_train','coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('coco_2014_minival','coco_2014_train','coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 81
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('coco_2014_minival','coco_2014_train','coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('keypoints_coco_2014_minival', 'keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival', 'keypoints_coco_2015_test')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 2
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('keypoints_coco_2014_minival', 'keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival', 'keypoints_coco_2015_test')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/20171220/X-101-32x8d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('keypoints_coco_2014_minival', 'keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival', 'keypoints_coco_2015_test')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
RPN_ONLY: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_RPN: True
RPN_MAX_LEVEL: 6
RPN_MIN_LEVEL: 2
RPN_ANCHOR_START_SIZE: 32
RPN_ASPECT_RATIOS: (0.5, 1, 2)
RESNETS:
STRIDE_1X1: False # default True for MSRA; False for C2 or Torch models
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
TEST:
DATASETS: ('keypoints_coco_2014_minival', 'keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival', 'keypoints_coco_2015_test')
SCALES: (800,)
MAX_SIZE: 1333
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 2000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 1
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.0025
GAMMA: 0.1
MAX_ITER: 60000
STEPS: [0, 30000, 40000]
# Equivalent schedules with...
# 1 GPU:
# BASE_LR: 0.0025
# MAX_ITER: 60000
# STEPS: [0, 30000, 40000]
# 2 GPUs:
# BASE_LR: 0.005
# MAX_ITER: 30000
# STEPS: [0, 15000, 20000]
# 4 GPUs:
# BASE_LR: 0.01
# MAX_ITER: 15000
# STEPS: [0, 7500, 10000]
# 8 GPUs:
# BASE_LR: 0.02
# MAX_ITER: 7500
# STEPS: [0, 3750, 5000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train',)
SCALES: (500,)
MAX_SIZE: 833
BATCH_SIZE_PER_IM: 256
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (500,)
MAX_SIZE: 833
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 2
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.005
GAMMA: 0.1
MAX_ITER: 30000
STEPS: [0, 15000, 20000]
# Equivalent schedules with...
# 1 GPU:
# BASE_LR: 0.0025
# MAX_ITER: 60000
# STEPS: [0, 30000, 40000]
# 2 GPUs:
# BASE_LR: 0.005
# MAX_ITER: 30000
# STEPS: [0, 15000, 20000]
# 4 GPUs:
# BASE_LR: 0.01
# MAX_ITER: 15000
# STEPS: [0, 7500, 10000]
# 8 GPUs:
# BASE_LR: 0.02
# MAX_ITER: 7500
# STEPS: [0, 3750, 5000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train',)
SCALES: (500,)
MAX_SIZE: 833
BATCH_SIZE_PER_IM: 256
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (500,)
MAX_SIZE: 833
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 4
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.01
GAMMA: 0.1
MAX_ITER: 15000
STEPS: [0, 7500, 10000]
# Equivalent schedules with...
# 1 GPU:
# BASE_LR: 0.0025
# MAX_ITER: 60000
# STEPS: [0, 30000, 40000]
# 2 GPUs:
# BASE_LR: 0.005
# MAX_ITER: 30000
# STEPS: [0, 15000, 20000]
# 4 GPUs:
# BASE_LR: 0.01
# MAX_ITER: 15000
# STEPS: [0, 7500, 10000]
# 8 GPUs:
# BASE_LR: 0.02
# MAX_ITER: 7500
# STEPS: [0, 3750, 5000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train',)
SCALES: (500,)
MAX_SIZE: 833
BATCH_SIZE_PER_IM: 256
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (500,)
MAX_SIZE: 833
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 7500
STEPS: [0, 3750, 5000]
# Equivalent schedules with...
# 1 GPU:
# BASE_LR: 0.0025
# MAX_ITER: 60000
# STEPS: [0, 30000, 40000]
# 2 GPUs:
# BASE_LR: 0.005
# MAX_ITER: 30000
# STEPS: [0, 15000, 20000]
# 4 GPUs:
# BASE_LR: 0.01
# MAX_ITER: 15000
# STEPS: [0, 7500, 10000]
# 8 GPUs:
# BASE_LR: 0.02
# MAX_ITER: 7500
# STEPS: [0, 3750, 5000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train',)
SCALES: (500,)
MAX_SIZE: 833
BATCH_SIZE_PER_IM: 256
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (500,)
MAX_SIZE: 833
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
MODEL:
TYPE: mask_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 81
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('coco_2014_train', 'coco_2014_valminusminival')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/35857389/12_2017_baselines/e2e_faster_rcnn_R-50-FPN_2x.yaml.01_37_22.KSeq0b5q/output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl
# -- Test time augmentation example -- #
BBOX_AUG:
ENABLED: True
SCORE_HEUR: UNION # AVG NOTE: cannot use AVG for e2e model
COORD_HEUR: UNION # AVG NOTE: cannot use AVG for e2e model
H_FLIP: True
SCALES: (400, 500, 600, 700, 900, 1000, 1100, 1200)
MAX_SIZE: 2000
SCALE_H_FLIP: True
SCALE_SIZE_DEP: False
AREA_TH_LO: 2500 # 50^2
AREA_TH_HI: 32400 # 180^2
ASPECT_RATIOS: ()
ASPECT_RATIO_H_FLIP: False
MASK_AUG:
ENABLED: True
HEUR: SOFT_AVG
H_FLIP: True
SCALES: (400, 500, 600, 700, 900, 1000, 1100, 1200)
MAX_SIZE: 2000
SCALE_H_FLIP: True
SCALE_SIZE_DEP: False
AREA_TH: 32400 # 180^2
ASPECT_RATIOS: ()
ASPECT_RATIO_H_FLIP: False
BBOX_VOTE:
ENABLED: True
VOTE_TH: 0.9
# -- Test time augmentation example -- #
USE_NCCL: False
OUTPUT_DIR: .
MODEL:
TYPE: keypoint_rcnn
CONV_BODY: FPN.add_fpn_ResNet50_conv5_body
NUM_CLASSES: 2
KEYPOINTS_ON: True
NUM_GPUS: 8
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.02
GAMMA: 0.1
MAX_ITER: 90000
STEPS: [0, 60000, 80000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True # accidentally True; disable in the future
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
KRCNN:
ROI_KEYPOINTS_HEAD: keypoint_rcnn_heads.add_roi_pose_head_v1convX
NUM_STACKED_CONVS: 8
NUM_KEYPOINTS: 17
USE_DECONV_OUTPUT: True
CONV_INIT: MSRAFill
CONV_HEAD_DIM: 512
UP_SCALE: 2
HEATMAP_SIZE: 56 # ROI_XFORM_RESOLUTION (14) * UP_SCALE (2) * USE_DECONV_OUTPUT (2)
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14
ROI_XFORM_SAMPLING_RATIO: 2
KEYPOINT_CONFIDENCE: bbox
TRAIN:
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/MSRA/R-50.pkl
DATASETS: ('keypoints_coco_2014_train', 'keypoints_coco_2014_valminusminival')
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_train/generalized_rcnn/rpn_proposals.pkl', 'https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_valminusminival/generalized_rcnn/rpn_proposals.pkl')
SCALES: (640, 672, 704, 736, 768, 800)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
TEST:
DATASETS: ('keypoints_coco_2014_minival',)
PROPOSAL_FILES: ('https://s3-us-west-2.amazonaws.com/detectron/35998996/12_2017_baselines/rpn_person_only_R-50-FPN_1x.yaml.08_10_08.0ZWmJm6F/output/test/keypoints_coco_2014_minival/generalized_rcnn/rpn_proposals.pkl',)
PROPOSAL_LIMIT: 1000
SCALES: (800,)
MAX_SIZE: 1333
NMS: 0.5
WEIGHTS: https://s3-us-west-2.amazonaws.com/detectron/37651887/12_2017_baselines/keypoint_rcnn_R-50-FPN_s1x.yaml.20_01_40.FDjUQ7VX/output/train/keypoints_coco_2014_train%3Akeypoints_coco_2014_valminusminival/generalized_rcnn/model_final.pkl
# -- Test time augmentation example -- #
BBOX_AUG:
ENABLED: True
SCORE_HEUR: AVG
COORD_HEUR: AVG
H_FLIP: True
SCALES: (400, 500, 600, 700, 900, 1000, 1100, 1200)
MAX_SIZE: 2000
SCALE_H_FLIP: True
SCALE_SIZE_DEP: False
AREA_TH_LO: 2500 # 50^2
AREA_TH_HI: 32400 # 180^2
KPS_AUG:
ENABLED: True
HEUR: HM_AVG
H_FLIP: True
SCALES: (400, 500, 600, 700, 900, 1000, 1100, 1200)
MAX_SIZE: 2000
SCALE_H_FLIP: True
SCALE_SIZE_DEP: True
AREA_TH: 22500 # 150^2
ASPECT_RATIOS: ()
ASPECT_RATIO_H_FLIP: False
# -- Test time augmentation example -- #
OUTPUT_DIR: .
The demo images are licensed as United States government work:
https://www.usa.gov/government-works
The image files were obtained on Jan 13, 2018 from the following
URLs.
16004479832_a748d55f21_k.jpg
https://www.flickr.com/photos/archivesnews/16004479832
18124840932_e42b3e377c_k.jpg
https://www.flickr.com/photos/usnavy/18124840932
33887522274_eebd074106_k.jpg
https://www.flickr.com/photos/usaid_pakistan/33887522274
15673749081_767a7fa63a_k.jpg
https://www.flickr.com/photos/usnavy/15673749081
34501842524_3c858b3080_k.jpg
https://www.flickr.com/photos/departmentofenergy/34501842524
24274813513_0cfd2ce6d0_k.jpg
https://www.flickr.com/photos/dhsgov/24274813513
19064748793_bb942deea1_k.jpg
https://www.flickr.com/photos/statephotos/19064748793
33823288584_1d21cf0a26_k.jpg
https://www.flickr.com/photos/cbpphotos/33823288584
17790319373_bd19b24cfc_k.jpg
https://www.flickr.com/photos/secdef/17790319373
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment