1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import logging
import traceback
import json
from alpha_types.venus import TOPIC_SEARCH_SORT
from libs.es import ESPerform
from .common import TopicDocumentField
from search.utils.common import *
class TopicUtils(object):
@classmethod
def get_related_user_info(cls, user_id, offset=0, size=10):
"""
:remark:获取指定用户相关用户列表
:param user_id:
:param offset:
:param size:
:return:
"""
try:
q = dict()
q["query"] = {
"term":{
"user_id": user_id
}
}
q["_source"] = ["tag_list","attention_user_id_list", "pick_user_id_list", "same_group_user_id_list"]
result_dict = ESPerform.get_search_results(ESPerform.get_cli(), "user", q, offset, size)
return result_dict
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return {"total_count":0,"hits":[]}
@classmethod
def analyze_related_user_id_list(cls,related_user_id_list):
"""
:remark:获取指定用户关联的 用户列表
:param related_user_id_list:
:return:
"""
try:
chinese_user_id_list = list()
japan_user_id_list = list()
korea_user_id_list = list()
for item in related_user_id_list:
if item["country_id"] == 0:
chinese_user_id_list.append(item["user_id"])
elif item["country_id"] == 1:
japan_user_id_list.append(item["user_id"])
elif item["country_id"] == 2:
korea_user_id_list.append(item["user_id"])
return (chinese_user_id_list,japan_user_id_list,korea_user_id_list)
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return ([],[],[])
@classmethod
def refresh_redis_hash_data(cls, redis_cli,redis_key,redis_data_dict):
try:
redis_cli.hmset(redis_key, redis_data_dict)
return True
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return False
@classmethod
def ___get_should_term_list(cls,ori_list,field_name="tag_list"):
try:
should_term_list = list()
for term_id in ori_list:
term_dict = {
"term":{
field_name:{"value":term_id}
}
}
should_term_list.append(term_dict)
return should_term_list
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return []
@classmethod
def get_topic_tag_info(cls, offset, size, topic_id_list,user_id):
try:
q = {
"query":{
"terms":{
"id": topic_id_list
}
},
"_source":{
"includes": ["id", "group_id", "offline_score", "user_id", "edit_tag_list"]
}
}
result_dict = ESPerform.get_search_results(ESPerform.get_cli(), sub_index_name="topic", query_body=q,
offset=offset, size=size)
topic_id_dict = dict()
for item in result_dict["hits"]:
if "edit_tag_list" in item["_source"]:
topic_id_dict[str(item["_source"]["id"])] = item["_source"]["edit_tag_list"]
else:
topic_id_dict[str(item["_source"]["id"])] = list()
return topic_id_dict
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return {}
@classmethod
def get_recommend_topic_ids(cls,user_id,offset,size,query=None,query_type=TopicPageType.FIND_PAGE,filter_topic_id_list=[],test_score=False,must_topic_id_list=[],recommend_tag_list=[],user_similar_score_list=[]):
"""
:需增加打散逻辑
:remark:获取首页推荐帖子列表
:param user_id:
:param offset:
:param size:
:param is_first_time:
:return:
"""
try:
attention_user_id_list = list()
pick_user_id_list = list()
same_group_id_list = list()
user_tag_list = list()
result_dict = TopicUtils.get_related_user_info(user_id, 0, 1)
if len(result_dict["hits"]) == 0:
logging.warning("not find user_id:%d in es!" % int(user_id))
else:
attention_user_info_list = result_dict["hits"][0]["_source"]["attention_user_id_list"]
attention_user_id_list = [item["user_id"] for item in attention_user_info_list]
pick_user_info_list = result_dict["hits"][0]["_source"]["pick_user_id_list"]
pick_user_id_list = [item["user_id"] for item in pick_user_info_list]
same_group_user_info_list = result_dict["hits"][0]["_source"]["same_group_user_id_list"]
same_group_id_list = [item["user_id"] for item in same_group_user_info_list]
same_group_id_list = same_group_id_list[:100]
user_tag_list = result_dict["hits"][0]["_source"]["tag_list"]
q = dict()
q["query"] = dict()
functions_list = [
{
"filter": {
"term": {
"language_type": 1
}
},
"weight": 3
},
{
"linear": {
"create_time": {
"scale": "1d",
"decay": 0.99
}
},
"weight": 500
}
]
if len(user_similar_score_list)>0:
for item in user_similar_score_list[:100]:
score_item = 3 * 10*item[1]
functions_list.append(
{
"filter": {"bool": {
"should": {"term": {"user_id": item[0]}}}},
"weight": score_item,
}
)
if len(attention_user_id_list)>0:
functions_list.append(
{
"filter": {"bool": {
"should": {"terms":{"user_id":attention_user_id_list}}}},
"weight": 3,
}
)
if len(pick_user_id_list)>0:
functions_list.append(
{
"filter": {"bool": {
"should": {"terms":{"user_id":pick_user_id_list}}}},
"weight": 2
}
)
if len(same_group_id_list)>0:
functions_list.append(
{
"filter": {"bool": {
"should": {"terms":{"user_id":same_group_id_list}}}},
"weight": 1
}
)
# query_tag_term_list = cls.___get_should_term_list(user_tag_list)
if len(user_tag_list)>0:
functions_list.append(
{
"filter":{"bool":{
"should":{"terms":{"tag_list":user_tag_list}}}},
"weight": 1
}
)
if len(recommend_tag_list)>0:
functions_list.append(
{
"filter":{"bool":{
"should":{"terms":{"edit_tag_list":recommend_tag_list}}}},
"weight": 3
}
)
low_content_level = 4 if query_type==TopicPageType.FIND_PAGE else 3
query_function_score = {
"query": {
"bool": {
"filter": [
{"range": {"content_level": {"gte": low_content_level, "lte": 5}}},
{"term": {"has_image":True}},
{"term": {"is_online": True}},
{"term": {"is_deleted": False}}
],
"should": [
{
"bool":{
"must":[
{"term":{"has_image":True}},
{"term": {"has_video": False}}
]
}
},{
"bool":{
"must":{
"term":{"has_video":True}
}
}
}
],
"minimum_should_match":1
}
},
"score_mode": "sum",
"boost_mode": "sum",
"functions": functions_list
}
if len(must_topic_id_list) > 0:
query_function_score["query"]["bool"]["must"] = {
"terms":{
"id": must_topic_id_list
}
}
if len(filter_topic_id_list)>0:
query_function_score["query"]["bool"]["must_not"] = {
"terms":{
"id": filter_topic_id_list
}
}
if query is not None:#搜索帖子
multi_fields = {
'description': 200,
'content': 300,
'name': 400,
'tag_name_list':300,
}
query_fields = ['^'.join((k, str(v))) for (k, v) in multi_fields.items()]
multi_match = {
'query': query,
'type': 'cross_fields',
'operator': 'and',
'fields': query_fields,
}
query_function_score["query"]["bool"]["should"] = [
{'multi_match': multi_match}
]
query_function_score["query"]["bool"]["minimum_should_match"] = 1
q["query"]["function_score"] = query_function_score
q["collapse"] = {
"field": "user_id"
}
q["_source"] = {
"includes":["id","group_id","offline_score","user_id","edit_tag_list"]
}
q["sort"] = [
{
"_script":{
"type":"number",
"script":{
"lang": "expression",
"source": "_score+doc['offline_score']"
# "lang":"painless",
# "source":"_score+params._source.offline_score"
},
"order":"desc"
}
},
"_score"
]
result_dict = ESPerform.get_search_results(ESPerform.get_cli(), sub_index_name="topic", query_body=q,
offset=offset, size=size)
if not test_score:
topic_id_dict = dict()
for item in result_dict["hits"]:
topic_id_dict[item["_source"]["id"]] = [item["_source"]["group_id"],item["_source"]["user_id"]]
return topic_id_dict
else:
topic_id_dict = dict()
for item in result_dict["hits"]:
topic_id_dict[item["_source"]["id"]] = [item["_source"]["group_id"],item["_source"]["user_id"],item["_score"]]
return topic_id_dict
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return dict()
@classmethod
def get_topic_detail_recommend_list(cls,user_id,topic_id,topic_tag_list,topic_group_id,topic_user_id,filter_topic_user_id,have_read_topic_list,offset,size,es_cli_obj=None):
"""
:remark 帖子详情页推荐列表,缺少按时间衰减
:param user_id:
:param topic_tag_list:
:param topic_group_id:
:param topic_user_id:
:param offset:
:param size:
:return:
"""
try:
if not es_cli_obj:
es_cli_obj = ESPerform.get_cli()
q = dict()
q["query"] = dict()
functions_list = [
{
"filter": {"term": {
"user_id": topic_user_id}},
"weight": 1000
},
{
"linear": {
"create_time": {
"scale": "1d",
"decay": 0.5
}
}
}
]
if isinstance(topic_group_id,int) and topic_group_id > 0:
functions_list.append(
{
"filter": {"term": {
"group_id": topic_group_id}},
"weight": 1,
}
)
have_read_topic_list.append(topic_id)
query_function_score = {
"query":{
"bool":{
"must": [
{"range": {"content_level": {"gte": 3, "lte": 5}}},
{"term": {"is_online": True}},
{"term": {"is_deleted": False}}
],
"must_not":{
"terms":{
"id":have_read_topic_list
}
}
}
},
"score_mode": "sum",
"boost_mode": "sum",
"functions": functions_list
}
if filter_topic_user_id:
query_function_score["query"]["bool"]["must"].append({"term": {"user_id": topic_user_id}})
if len(topic_tag_list)>0:
query_function_score["query"]["bool"]["should"]={
"terms":{
"tag_list":topic_tag_list
}
}
q["query"]["function_score"] = query_function_score
q["_source"] = {
"includes":["id","group_id","user_id","_score"]
}
result_dict = ESPerform.get_search_results(es_cli_obj, sub_index_name="topic", query_body=q,
offset=offset, size=size)
return result_dict["hits"]
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return []
@classmethod
def get_topic_tag_id_list(cls,topic_id,es_cli_obj=None):
"""
:remark 获取帖子标签列表
:param topic_id:
:return:
"""
try:
if not es_cli_obj:
es_cli_obj = ESPerform.get_cli()
q = dict()
q["query"] = {
"term":{
"id": topic_id
}
}
q["_source"] = {
"includes":[TopicDocumentField.TAG_LIST]
}
result_dict = ESPerform.get_search_results(es_cli_obj,sub_index_name="topic",query_body=q,size=1)
tag_id_list = []
if len(result_dict["hits"])>0:
tag_id_list = result_dict["hits"][0]["_source"][TopicDocumentField.TAG_LIST]
return tag_id_list
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return list()
@classmethod
def get_tag_aggregation_topic_id_list(cls,user_id,tag_id,offset,size):
try:
attention_user_id_list = list()
pick_user_id_list = list()
result_dict = TopicUtils.get_related_user_info(user_id, 0, 1)
if len(result_dict["hits"]) == 0:
logging.warning("not find user_id:%d in es!" % int(user_id))
else:
attention_user_info_list = result_dict["hits"][0]["_source"]["attention_user_id_list"]
attention_user_id_list = [item["user_id"] for item in attention_user_info_list]
pick_user_info_list = result_dict["hits"][0]["_source"]["pick_user_id_list"]
pick_user_id_list = [item["user_id"] for item in pick_user_info_list]
functions_list = [
{
"linear": {
"create_time": {
"scale": "1d",
"decay": 0.5
}
}
}
]
if len(attention_user_id_list)>0:
functions_list.append(
{
"filter": {"bool": {
"should": {"terms":{"user_id":attention_user_id_list}}}},
"weight": 3,
}
)
if len(pick_user_id_list)>0:
functions_list.append(
{
"filter": {"bool": {
"should": {"terms":{"user_id":pick_user_id_list}}}},
"weight": 2
}
)
query_function_score = {
"query":{
"bool":{
"must": [
#{"range": {"content_level": {"gte": 3, "lte": 5}}},
{"term": {"is_online": True}},
{"term": {"is_deleted": False}},
{"term": {"tag_list":tag_id}}
],
"must_not":[
{"terms": {"content_level": [1,2]}}
]
}
},
"score_mode": "sum",
"boost_mode": "sum",
"functions": functions_list
}
q = dict()
q["query"] = {
"function_score":query_function_score
}
q["_source"] = {
"includes":["id","group_id","user_id","_score","offline_score","manual_score"]
}
q["sort"] = [
{
"_script":{
"type":"number",
"script":{
"lang": "expression",
"source": "_score+doc['offline_score']+doc['manual_score']"
# "lang":"painless",
# "source":"_score+params._source.offline_score+params._source.manual_score"
},
"order":"desc"
}
}
]
result_dict = ESPerform.get_search_results(ESPerform.get_cli(), sub_index_name="topic", query_body=q,
offset=offset, size=size)
return result_dict["hits"]
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return list()
@classmethod
def process_filters(cls, filters):
"""处理过滤器部分。"""
f = [
{"term": {"is_online": True}},
{"term": {"is_deleted": False}},
]
if not filters:
return f
for k, v in filters.items():
if k == "group_id":
f.append({
"term": {"group_id": v},
})
return f
@classmethod
def process_nfilters(cls, nfilters):
"""处理过滤器部分。"""
nf = []
if not nfilters:
return nf
for k, v in nfilters.items():
pass
return nf
@classmethod
def process_sort(cls, sorts_by):
"""处理排序部分。"""
sort_rule = []
if sorts_by == TOPIC_SEARCH_SORT.VOTE_NUM:
sort_rule.append({
"vote_num":{
"order":"desc"
},
"update_time":{
"order":"desc"
},
})
return sort_rule
@classmethod
def list_topic_ids(cls, filters, nfilters, sorts_by, offset=0, size=10):
q = {
"query": {
"bool": {
"must": cls.process_filters(filters),
"must_not": cls.process_nfilters(nfilters),
}
},
"_source": {
"includes":["id"]
},
"sort": [],
}
if sorts_by:
sorts = cls.process_sort(sorts_by)
q["sort"] = sorts
try:
result_dict = ESPerform.get_search_results(ESPerform.get_cli(), sub_index_name="topic",
query_body=q, offset=offset, size=size)
return result_dict["hits"]
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return []