collect_data.py 37.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
# -*- coding: UTF-8 -*-
# !/usr/bin/env python

from kafka import KafkaConsumer
import random
from libs.cache import redis_client
import logging
from linucb.views.linucb import LinUCB
import json
from trans2es.models.tag import TopicTag,Tag
from trans2es.models.topic import TopicHomeRecommend
import traceback
from django.conf import settings
from libs.es import ESPerform
from search.utils.common import *
import libs.tools as Tools
from trans2es.models.pictorial import CommunityPictorialHomeFeed
from trans2es.models.portrait_stat import LikeDeviceTagStat
from libs.error import logging_exception
import os
from search.views.tag import get_same_tagset_ids
import msgpack


def loads_data(data):
    try:
        result = json.loads(data)
        msg = True
        return result,msg
    except:
        result = msgpack.loads(data)
        msg = False
        return result,msg


class KafkaManager(object):
    consumser_obj = None

    @classmethod
    def get_kafka_consumer_ins(cls, topic_name=None):

        if not cls.consumser_obj:
            topic_name = settings.KAFKA_TOPIC_NAME if not topic_name else topic_name
            gm_logging_name = settings.KAFKA_GM_LOGGING_TOPIC_NAME
            cls.consumser_obj = KafkaConsumer(bootstrap_servers=settings.KAFKA_BROKER_LIST)
            cls.consumser_obj.subscribe([topic_name, gm_logging_name])

        return cls.consumser_obj

class CollectData(object):

    def __init__(self):
        # lin tag参数
        self.linucb_matrix_redis_prefix = "physical:linucb:device_id:"
        self.ctr_linucb_matrix_redis_prefix = "ctr_physical:linucb:device_id:"
        # lin推荐tag
        self.linucb_recommend_redis_prefix = "physical:linucb:tag_recommend:device_id:"
        self.ctr_linucb_recommend_redis_prefix = "ctr_physical:linucb:tag_recommend:device_id:"
        # 推荐帖子
        self.linucb_recommend_topic_id_prefix = "physical:linucb:topic_recommend:device_id:"
        self.ctr_linucb_recommend_topic_id_prefix = "ctr_physical:linucb:topic_recommend:device_id:"
        # 推荐榜单
        self.linucb_recommend_pictorial_id_prefix = "physical:linucb:pictorial_recommend:device_id:"
        self.ctr_linucb_recommend_pictorial_id_prefix = "ctr_physical:linucb:pictorial_recommend:device_id:"

        self.tag_topic_id_redis_prefix = "physical:tag_id:topic_id_list:"
        self.click_recommend_redis_key_prefix = "physical:click_recommend:device_id:"
        # 默认
        self.user_feature = [0, 1]


    def _get_user_linucb_info(self, device_id, linucb_matrix_prefix):
        try:
            redis_key = linucb_matrix_prefix + str(device_id)

            # dict的key为标签ID,value为4个矩阵
            redis_linucb_tag_data_dict = redis_client.hgetall(redis_key)

            return redis_linucb_tag_data_dict
        except:
            logging_exception()
            logging.error("catch exception,err_msg:%s" % traceback.format_exc())
            return dict()

    def update_recommend_tag_list(self, device_id, user_feature=None, user_id=None, click_topic_tag_list=None,
                                  new_user_click_tag_list=[], linucb_matrix_prefix=None, linucb_recommend_tag_prefix=None,
                                  linucb_topic_ids_prefix=None, linucb_pictorial_ids_prefix=None):
        try:
            redis_linucb_tag_data_dict = self._get_user_linucb_info(device_id, linucb_matrix_prefix)
            if len(redis_linucb_tag_data_dict) == 0:
                recommend_tag_list = list(LinUCB.get_default_tag_list(user_id))
                LinUCB.init_device_id_linucb_info(redis_client, linucb_matrix_prefix, device_id, recommend_tag_list)
            else:
                user_feature = user_feature if user_feature else self.user_feature
                linucb_tag_list = list(redis_linucb_tag_data_dict.keys())
                (recommend_tag_dict, recommend_tag_set) = LinUCB.linucb_recommend_tag(device_id,
                                                                                      redis_linucb_tag_data_dict,
                                                                                      user_feature, linucb_tag_list)
                recommend_tag_list = list(recommend_tag_dict.keys())

            if len(recommend_tag_list) > 0:
                tag_recommend_redis_key = linucb_recommend_tag_prefix + str(device_id)
                redis_client.set(tag_recommend_redis_key, json.dumps(recommend_tag_list))
                redis_client.expire(tag_recommend_redis_key, 30*24*60*60)

                have_read_topic_id_list = Tools.get_have_read_topic_id_list(device_id,user_id,TopicPageType.HOME_RECOMMEND)
                have_read_lin_pictorial_id_list = Tools.get_have_read_lin_pictorial_id_list(device_id, user_id,
                                                                                            TopicPageType.HOME_RECOMMEND)
                promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE1_DB_NAME).filter(is_online=1).values_list("topic_id",flat=True)
                promote_lin_pictorial_id_list = CommunityPictorialHomeFeed.objects.using(settings.SLAVE1_DB_NAME).filter(
                    is_deleted=0, is_online=1).values_list("pictorial_id", flat=True)
                have_read_topic_id_list.extend(promote_recommend_topic_id_list)
                have_read_lin_pictorial_id_list.extend(promote_lin_pictorial_id_list)

                recommend_topic_id_list = list()
                recommend_topic_id_list_dict = dict()
                recommend_topic_id_list_click = list()
                recommend_topic_id_list_click_dict = dict()
                recommend_lin_pictorial_id_list = list()

                if click_topic_tag_list and len(click_topic_tag_list)>0:
                    click_topic_tag_list_same_tagset_ids = get_same_tagset_ids(click_topic_tag_list)
                    recommend_topic_id_list_click,recommend_topic_id_list_click_dict = ESPerform.get_tag_topic_list_dict(click_topic_tag_list_same_tagset_ids,
                                                                                 have_read_topic_id_list,size=2)
                    if len(recommend_topic_id_list_click) > 0:
                        recommend_topic_id_list.extend(recommend_topic_id_list_click)
                        recommend_topic_id_list_dict.update(recommend_topic_id_list_click_dict)
                        # have_read_topic_id_list.extend(recommend_topic_id_list_click)
                        # click_recommend_redis_key = self.click_recommend_redis_key_prefix + str(device_id)
                        # click_redis_data_dict = {
                        #     "data": json.dumps(recommend_topic_id_list),
                        #     "datadict":json.dumps(recommend_topic_id_list_dict),
                        #     "cursor": 0
                        #   }
                        # redis_client.hmset(click_recommend_redis_key, click_redis_data_dict)

                tag_id_list = recommend_tag_list[0:20]
                pictorial_recommend_redis_key = linucb_pictorial_ids_prefix + str(device_id)
                topic_recommend_redis_key = linucb_topic_ids_prefix + str(device_id)
                # redis_topic_data_dict = redis_client.hgetall(topic_recommend_redis_key)
                # redis_topic_list = list()
                # cursor = -1
                # if b"data" in redis_topic_data_dict:
                #     redis_topic_list = json.loads(redis_topic_data_dict[b"data"]) if redis_topic_data_dict[
                #         b"data"] else []
                #     cursor = int(str(redis_topic_data_dict[b"cursor"], encoding="utf-8"))


                # if len(recommend_topic_id_list)==0 and cursor==0 and len(redis_topic_list)>0:
                #     have_read_topic_id_list.extend(redis_topic_list[:2])
                if len(new_user_click_tag_list)>0:
                     new_user_click_tag_list_same_tagset_ids = get_same_tagset_ids(new_user_click_tag_list)
                     tag_topic_id_list,tag_topic_dict = ESPerform.get_tag_topic_list_dict(new_user_click_tag_list_same_tagset_ids, have_read_topic_id_list)
                     recommend_lin_pictorial_id_list = ESPerform.get_tag_pictorial_id_list(new_user_click_tag_list_same_tagset_ids,
                                                                                      have_read_lin_pictorial_id_list)
                else:
                     tag_id_list_same_tagset_ids = get_same_tagset_ids(tag_id_list)
                     tag_topic_id_list,tag_topic_dict = ESPerform.get_tag_topic_list_dict(tag_id_list_same_tagset_ids,have_read_topic_id_list)
                     recommend_lin_pictorial_id_list = ESPerform.get_tag_pictorial_id_list(tag_id_list_same_tagset_ids,
                                                                                      have_read_lin_pictorial_id_list)

                if len(recommend_topic_id_list)>0 or len(tag_topic_id_list)>0 or len(new_user_click_tag_list) > 0:
                    tag_topic_id_list = recommend_topic_id_list + tag_topic_id_list
                    tag_topic_dict.update(recommend_topic_id_list_dict)
                    redis_data_dict = {
                        "data": json.dumps(tag_topic_id_list),
                        "datadict":json.dumps(tag_topic_dict),
                        "cursor":0
                    }
                    redis_client.hmset(topic_recommend_redis_key,redis_data_dict)
                if len(recommend_lin_pictorial_id_list) > 0:
                     pictorial_data_dict = {
                    "data": json.dumps(recommend_lin_pictorial_id_list),
                    "cursor": 0
                      }
                     redis_client.hmset(pictorial_recommend_redis_key, pictorial_data_dict)

            return True
        except:
            logging_exception()
            logging.error("catch exception,err_msg:%s" % traceback.format_exc())
            return False

    def update_user_linucb_tag_info(self, reward, device_id, tag_id, user_feature, linucb_matrix_redis_prefix):
        try:
            user_feature = user_feature if user_feature else self.user_feature
            return LinUCB.update_linucb_info(user_feature, reward, tag_id, device_id, linucb_matrix_redis_prefix, redis_client)
        except:
            logging_exception()
            logging.error("update_user_linucb_tag_info error!")
            return False


    def transfer_old_info2ctr_feature_key(self, device_id):
        try:
            # 移植老用户的lin标签参数信息到ctr特征策略
            ctr_linucb_matrix_redis_prefix_key = self.ctr_linucb_matrix_redis_prefix + str(device_id)
            linucb_matrix_redis_prefix_key = self.linucb_matrix_redis_prefix + str(device_id)
            if redis_client.exists(ctr_linucb_matrix_redis_prefix_key):  #如果新策略存在lin信息,则不需要移植
                return True
            else:
                if redis_client.exists(linucb_matrix_redis_prefix_key):
                    older_device_info = redis_client.hgetall(linucb_matrix_redis_prefix_key)
                    redis_client.hmset(ctr_linucb_matrix_redis_prefix_key, older_device_info)
            # 移植老用户的lin推荐标签列表信息到ctr特征策略
            ctr_linucb_recommend_redis_prefix = self.ctr_linucb_recommend_redis_prefix + str(device_id)
            linucb_recommend_redis_prefix = self.linucb_recommend_redis_prefix + str(device_id)
            if not redis_client.exists(ctr_linucb_recommend_redis_prefix):
                if redis_client.exists(linucb_recommend_redis_prefix):
                    older_device_info = redis_client.get(linucb_recommend_redis_prefix)
                    redis_client.set(ctr_linucb_recommend_redis_prefix, older_device_info)
            # 移植老用户的lin帖子推荐队列信息到ctr特征策略
            linucb_recommend_topic_id_prefix = self.linucb_recommend_topic_id_prefix + str(device_id)
            ctr_linucb_recommend_topic_id_prefix = self.ctr_linucb_recommend_topic_id_prefix + str(device_id)
            if not redis_client.exists(ctr_linucb_recommend_topic_id_prefix):
                if redis_client.exists(linucb_recommend_topic_id_prefix):
                    older_device_info = redis_client.hgetall(linucb_recommend_topic_id_prefix)
                    redis_client.hmset(ctr_linucb_recommend_topic_id_prefix, older_device_info)
            # 移植老用户的lin榜单推荐队列信息到ctr特征策略
            linucb_recommend_pictorial_id_prefix = self.linucb_recommend_pictorial_id_prefix + str(device_id)
            ctr_linucb_recommend_pictorial_id_prefix = self.ctr_linucb_recommend_pictorial_id_prefix + str(device_id)
            if not redis_client.exists(ctr_linucb_recommend_pictorial_id_prefix):
                if redis_client.exists(linucb_recommend_pictorial_id_prefix):
                    older_device_info = redis_client.hgetall(linucb_recommend_pictorial_id_prefix)
                    redis_client.hmset(ctr_linucb_recommend_pictorial_id_prefix, older_device_info)
            logging.info("transfer_old_info2ctr_feature_key sucess:"+str(device_id))
            return True
        except:
            logging_exception()
            logging.error("transfer_old_info2ctr_feature_key error!")
            return False

    def get_device_tag_ctr(self, device_id, tag_id):
        # 获取用户在该tag下的ctr信息
        try:
            device_tag_ctr = LikeDeviceTagStat.objects.using(settings.SLAVE1_DB_NAME).filter(
                device_id=device_id, tag_id=tag_id).values("tag_ctr_30")
            if device_tag_ctr:
                device_tag_ctr_value = device_tag_ctr[0].get("tag_ctr_30", 0.0)
            else:
                device_tag_ctr_value = 0.0
            logging.info("get_device_tag_ctr" + str(device_id) + str(tag_id))
            return device_tag_ctr_value
        except:
            logging_exception()
            logging.error("get_device_tag_ctr error!")
            return 0.0

    def consume_data_from_kafka(self,topic_name=None):
        try:
            user_feature = [1, 1]

            kafka_consumer_obj = KafkaManager.get_kafka_consumer_ins(topic_name)
            while True:
                msg_dict = kafka_consumer_obj.poll(timeout_ms=100)
                for msg_key in msg_dict:
                    consume_msg = msg_dict[msg_key]
                    for ori_msg in consume_msg:
                        try:
                            raw_val_dict,msg = loads_data(ori_msg.value)
                            if msg:
                                logging.info(ori_msg.value)
                            if "type" in raw_val_dict and \
                                    (raw_val_dict["type"] in ("on_click_feed_topic_card","on_click_button")):
                                click_topic_tag_list = list()
                                if "on_click_feed_topic_card" == raw_val_dict["type"]:
                                    topic_id =  raw_val_dict["params"]["topic_id"]
                                    device_id = raw_val_dict["device"]["device_id"]
                                    user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None

                                    logging.info("consume topic_id:%s,device_id:%s" % (str(topic_id), str(device_id)))
                                    # topic_tag_list = list(TopicTag.objects.using(settings.SLAVE_DB_NAME).filter(topic_id=topic_id,is_online=True).values_list("tag_id",flat=True))
                                    # tag_query_results = Tag.objects.using(settings.SLAVE_DB_NAME).filter(id__in=topic_tag_list,is_online=True,is_deleted=False).values_list("id","collection","is_ai")
                                    # for id,collection,is_ai in tag_query_results:
                                    #     if collection and is_ai:
                                    #         click_topic_tag_list.append(id)
                                    topic_tag_list = list()
                                    click_results = TopicTag.objects.using(settings.SLAVE1_DB_NAME).filter(
                                        topic_id=topic_id, is_online=True).values_list("tag_id", "is_collection")
                                    for tag_id, is_collection in click_results:
                                        # topic_tag_list.append(tag_id)
                                        if is_collection:
                                            topic_tag_list.append(tag_id)
                                    tag_query_results = Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
                                        id__in=topic_tag_list, is_online=True, is_deleted=False, is_category=False).values_list("id",
                                                                                                             "is_ai")
                                    for id, is_ai in tag_query_results:
                                        click_topic_tag_list.append(id)

                                    logging.info("positive tag_list,device_id:%s,topic_id:%s,tag_list:%s" % (
                                    str(device_id), str(topic_id), str(click_topic_tag_list)))
                                elif raw_val_dict["type"] == "on_click_button" and "page_name" in \
                                        raw_val_dict["params"] and "button_name" in raw_val_dict["params"] \
                                        and "extra_param" in raw_val_dict["params"]:
                                    if raw_val_dict["params"]["page_name"] == "search_detail" and \
                                            raw_val_dict["params"]["button_name"] == "focus_tag":
                                        tag_name = raw_val_dict["params"]["extra_param"]
                                        device_id = raw_val_dict["device"]["device_id"]
                                        user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
                                        tag_list = list(Tag.objects.using(settings.SLAVE1_DB_NAME).filter(name=tag_name,is_online=True,is_deleted=False, is_category=False).values_list("id",flat=True))
                                        click_topic_tag_list.extend(tag_list)
                                        logging.info("query tag attention,positive tag_list,device_id:%s,query_name:%s,tag_list:%s" % (
                                        str(device_id), tag_name, str(click_topic_tag_list)))


                                logging.info("click_topic_tag_list:%s"%(str(click_topic_tag_list)))

                                is_click = 1
                                is_vote = 0

                                reward = 1 if is_click or is_vote else 0

                                # 移植老用户的lin信息到ctr特征策略
                                self.transfer_old_info2ctr_feature_key(device_id)

                                # 更新不同策略的lin标签参数信息
                                for tag_id in click_topic_tag_list:
                                    self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
                                                                     self.linucb_matrix_redis_prefix)
                                    # 获取tag的ctr信息
                                    device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
                                    user_feature_ctr = [device_tag_ctr, device_tag_ctr]
                                    self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature_ctr,
                                                                     self.ctr_linucb_matrix_redis_prefix)


                                # 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
                                if len(click_topic_tag_list)>0:
                                    self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                   click_topic_tag_list=click_topic_tag_list,
                                                                   linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
                                                                   linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
                                                                   linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
                                                                   linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
                                    self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                   click_topic_tag_list=click_topic_tag_list,
                                                                   linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
                                                                   linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
                                                                   linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
                                                                   linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
                            # elif "type" in raw_val_dict and "page_precise_exposure" == raw_val_dict["type"]:
                            #     if isinstance(raw_val_dict["params"]["exposure_cards"],str):
                            #         exposure_cards_list = json.loads(raw_val_dict["params"]["exposure_cards"])
                            #     elif isinstance(raw_val_dict["params"]["exposure_cards"],list):
                            #         exposure_cards_list = raw_val_dict["params"]["exposure_cards"]
                            #     else:
                            #         exposure_cards_list = list()
                            #     device_id = raw_val_dict["device"]["device_id"]
                            #     user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
                            #     logging.warning("type msg:%s" % raw_val_dict.get("type"))
                            #     exposure_topic_id_list = list()
                            #     for item in exposure_cards_list:
                            #         if "card_id" not in item:
                            #             continue
                            #         exposure_topic_id = item["card_id"]
                            #         logging.info(
                            #             "consume exposure topic_id:%s,device_id:%s" % (str(exposure_topic_id), str(device_id)))
                            #         if exposure_topic_id:
                            #             exposure_topic_id_list.append(exposure_topic_id)
                            #
                            #     topic_tag_id_dict = dict()
                            #     tag_list = list()
                            #     exposure_sql_query_results = TopicTag.objects.using(settings.SLAVE_DB_NAME).\
                            #         filter(topic_id__in=exposure_topic_id_list).\
                            #         values_list("topic_id","tag_id","is_online","is_collection")
                            #     # if len(exposure_sql_query_results)>0:
                            #     for topic_id,tag_id,is_online,is_collection in exposure_sql_query_results:
                            #         if is_online and is_collection == 1:
                            #             tag_list.append(tag_id)
                            #         if is_online:
                            #             tag_sql_query_results = Tag.objects.using(settings.SLAVE_DB_NAME).filter(
                            #                 id=tag_id).values_list("id", "collection", "is_ai")
                            #             for id, collection, is_ai in tag_sql_query_results:
                            #                 if (is_ai == 1) and id not in tag_list:
                            #                     tag_list.append(id)
                            #
                            #         if topic_id not in topic_tag_id_dict:
                            #             topic_tag_id_dict[topic_id] = list()
                            #         topic_tag_id_dict[topic_id].append(tag_id)
                            #
                            #     is_click = 0
                            #     is_vote = 0
                            #
                            #     reward = 1 if is_click or is_vote else 0
                            #
                            #     logging.info("negative tag_list,device_id:%s,topic_tag_id_dict:%s" % (
                            #     str(device_id), str(topic_tag_id_dict)))
                            #     for tag_id in tag_list:
                            #         self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature)
                            #
                            #     # 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
                            #     self.update_recommend_tag_list(device_id, user_feature, user_id)
                            elif "type" in raw_val_dict and "interest_choice_click_next" == raw_val_dict["type"]:
                                if isinstance(raw_val_dict["params"]["tagid_list"],str):
                                    tagid_list = json.loads(raw_val_dict["params"]["tagid_list"])
                                elif isinstance(raw_val_dict["params"]["tagid_list"],list):
                                    tagid_list = raw_val_dict["params"]["tagid_list"]
                                else:
                                    tagid_list = list()
                                logging.warning("unknown type msg:%s" % raw_val_dict.get("type", "missing type"))

                                device_id = raw_val_dict["device"]["device_id"]
                                user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None

                                # if len(exposure_sql_query_results)>0:
                                if len(tagid_list) > 0:
                                   tag_query_results = list(Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
                                        id__in=tagid_list, is_online=True, is_deleted=False,
                                        is_category=False).values_list("id",flat =True))
                                   is_click = 1
                                   is_vote = 0

                                   reward = 1 if is_click or is_vote else 0

                                   # 移植老用户的lin信息到ctr特征策略
                                   self.transfer_old_info2ctr_feature_key(device_id)

                                   for tag_id in tag_query_results:
                                       self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
                                                                        self.linucb_matrix_redis_prefix)
                                       # 获取tag的ctr信息
                                       device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
                                       user_feature_ctr = [device_tag_ctr, device_tag_ctr]
                                       self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature_ctr,
                                                                        self.ctr_linucb_matrix_redis_prefix)

                                   # 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
                                   self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                  new_user_click_tag_list=tag_query_results,
                                                                  linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
                                                                  linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
                                                                  linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
                                                                  linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
                                   self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                  new_user_click_tag_list=tag_query_results,
                                                                  linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
                                                                  linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
                                                                  linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
                                                                  linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
                                else:
                                    logging.warning("unknown type msg:%s" % raw_val_dict.get("type", "missing type"))
                            # 用户点击个性化push进linucb
                            elif "type" in raw_val_dict and raw_val_dict["type"] == "on_click_push":
                                # 后端已过滤,该tag_ids是帖子/榜单的编辑标签
                                if "tag_ids" in raw_val_dict["params"]:
                                    tag_ids = raw_val_dict["params"]["tag_ids"]
                                else:
                                    # todo 客户端埋点bug,后期移除
                                    tag_ids = raw_val_dict["params"].get("tag_ids:", [])
                                if isinstance(tag_ids, str):
                                    tagid_list = json.loads(tag_ids)
                                elif isinstance(tag_ids, list):
                                    tagid_list = tag_ids
                                else:
                                    tagid_list = list()

                                device_id = raw_val_dict["device"]["device_id"]
                                user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
                                if len(tagid_list) > 0:
                                    tag_query_results = Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
                                        id__in=tagid_list, is_online=True, is_deleted=False,
                                        is_category=False).values_list("id", flat=True)
                                    is_click = 1
                                    is_vote = 0
                                    reward = 1 if is_click or is_vote else 0
                                    for tag_id in tag_query_results:
                                        self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
                                                                         self.linucb_matrix_redis_prefix)
                                        # 获取tag的ctr信息
                                        device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
                                        user_feature_ctr = [device_tag_ctr, device_tag_ctr]
                                        self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature_ctr,
                                                                         self.ctr_linucb_matrix_redis_prefix)
                                    self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                   linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
                                                                   linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
                                                                   linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
                                                                   linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
                                    self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                   linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
                                                                   linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
                                                                   linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
                                                                   linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
                                    logging.info("on_click_push topic type:%s, device_id:%s, tag_ids:%s" %
                                                 (raw_val_dict.get("type", "missing type"), str(device_id),
                                                  str(tagid_list)))
                            # 用户点击问题清单进linucb
                            elif b'content' in raw_val_dict:
                              data = json.loads(raw_val_dict[b'content'])
                              if 'SYS' in data and 'APP' in data and 'action' in data['SYS'] and data['SYS']['action'] == "venus/community/skin_check/submit_questions":
                                device_id = data['SYS']['cl_id']
                                tagid_list = list(data['APP'].get('answer_tag', []))
                                user_id = data['SYS'].get('user_id', None)
                                logging.info("skin_check topic type:%s, device_id:%s, answer_tag:%s" %
                                             (str(data['SYS']['action']), str(device_id), str(tagid_list)))
                                if len(tagid_list) > 0:
                                    tag_query_results = list(Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
                                        id__in=tagid_list, is_online=True, is_deleted=False,
                                        is_category=False).values_list("id", flat=True))
                                    tag_query_results_multi = [i for i in tagid_list if i in tag_query_results]
                                    is_click = 1
                                    is_vote = 0

                                    reward = 1 if is_click or is_vote else 0
                                    for i in range(5):
                                        for tag_id in tag_query_results_multi:
                                            self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
                                                                             self.linucb_matrix_redis_prefix)
                                            # 获取tag的ctr信息
                                            device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
                                            user_feature_ctr = [device_tag_ctr, device_tag_ctr]
                                            self.update_user_linucb_tag_info(reward, device_id, tag_id,
                                                                             user_feature_ctr,
                                                                             self.ctr_linucb_matrix_redis_prefix)

                                    # 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
                                    self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                   linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
                                                                   linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
                                                                   linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
                                                                   linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
                                    self.update_recommend_tag_list(device_id, user_feature, user_id,
                                                                   linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
                                                                   linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
                                                                   linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
                                                                   linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
                                    logging.info("skin_check topic type:%s, device_id:%s, tag_query_results:%s" %
                                                 (str(data['SYS']['action']), str(device_id), str(tag_query_results)))
                            else:
                                if msg:
                                  logging.warning("unknown type msg:%s" % raw_val_dict.get("type", "missing type"))
                        except:
                            logging_exception()
                            logging.error("catch exception,err_msg:%s" % traceback.format_exc())
                            # 假设数据库连接异常,强制退出程序,supervisor重启linub
                            os._exit(0)
            return True
        except:
            logging_exception()
            logging.error("catch exception,err_msg:%s" % traceback.format_exc())
            return False