1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# -*- coding: UTF-8 -*-
# !/usr/bin/env python
from kafka import KafkaConsumer
import random
from libs.cache import redis_client
import logging
from linucb.views.linucb import LinUCB
import json
from trans2es.models.tag import TopicTag,Tag
from trans2es.models.topic import TopicHomeRecommend
import traceback
from django.conf import settings
from libs.es import ESPerform
from search.utils.common import *
import libs.tools as Tools
from trans2es.models.pictorial import CommunityPictorialHomeFeed
from trans2es.models.portrait_stat import LikeDeviceTagStat
from libs.error import logging_exception
import os
from search.views.tag import get_same_tagset_ids
import msgpack
def loads_data(data):
try:
result = json.loads(data)
msg = True
return result,msg
except:
result = msgpack.loads(data)
msg = False
return result,msg
class KafkaManager(object):
consumser_obj = None
@classmethod
def get_kafka_consumer_ins(cls, topic_name=None):
if not cls.consumser_obj:
topic_name = settings.KAFKA_TOPIC_NAME if not topic_name else topic_name
gm_logging_name = settings.KAFKA_GM_LOGGING_TOPIC_NAME
cls.consumser_obj = KafkaConsumer(bootstrap_servers=settings.KAFKA_BROKER_LIST)
cls.consumser_obj.subscribe([topic_name, gm_logging_name])
return cls.consumser_obj
class CollectData(object):
def __init__(self):
# lin tag参数
self.linucb_matrix_redis_prefix = "physical:linucb:device_id:"
self.ctr_linucb_matrix_redis_prefix = "ctr_physical:linucb:device_id:"
# lin推荐tag
self.linucb_recommend_redis_prefix = "physical:linucb:tag_recommend:device_id:"
self.ctr_linucb_recommend_redis_prefix = "ctr_physical:linucb:tag_recommend:device_id:"
# 推荐帖子
self.linucb_recommend_topic_id_prefix = "physical:linucb:topic_recommend:device_id:"
self.ctr_linucb_recommend_topic_id_prefix = "ctr_physical:linucb:topic_recommend:device_id:"
# 推荐榜单
self.linucb_recommend_pictorial_id_prefix = "physical:linucb:pictorial_recommend:device_id:"
self.ctr_linucb_recommend_pictorial_id_prefix = "ctr_physical:linucb:pictorial_recommend:device_id:"
self.tag_topic_id_redis_prefix = "physical:tag_id:topic_id_list:"
self.click_recommend_redis_key_prefix = "physical:click_recommend:device_id:"
# 默认
self.user_feature = [0, 1]
def _get_user_linucb_info(self, device_id, linucb_matrix_prefix):
try:
redis_key = linucb_matrix_prefix + str(device_id)
# dict的key为标签ID,value为4个矩阵
redis_linucb_tag_data_dict = redis_client.hgetall(redis_key)
return redis_linucb_tag_data_dict
except:
logging_exception()
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return dict()
def update_recommend_tag_list(self, device_id, user_feature=None, user_id=None, click_topic_tag_list=None,
new_user_click_tag_list=[], linucb_matrix_prefix=None, linucb_recommend_tag_prefix=None,
linucb_topic_ids_prefix=None, linucb_pictorial_ids_prefix=None):
try:
redis_linucb_tag_data_dict = self._get_user_linucb_info(device_id, linucb_matrix_prefix)
if len(redis_linucb_tag_data_dict) == 0:
recommend_tag_list = list(LinUCB.get_default_tag_list(user_id))
LinUCB.init_device_id_linucb_info(redis_client, linucb_matrix_prefix, device_id, recommend_tag_list)
else:
user_feature = user_feature if user_feature else self.user_feature
linucb_tag_list = list(redis_linucb_tag_data_dict.keys())
(recommend_tag_dict, recommend_tag_set) = LinUCB.linucb_recommend_tag(device_id,
redis_linucb_tag_data_dict,
user_feature, linucb_tag_list)
recommend_tag_list = list(recommend_tag_dict.keys())
if len(recommend_tag_list) > 0:
tag_recommend_redis_key = linucb_recommend_tag_prefix + str(device_id)
redis_client.set(tag_recommend_redis_key, json.dumps(recommend_tag_list))
redis_client.expire(tag_recommend_redis_key, 30*24*60*60)
have_read_topic_id_list = Tools.get_have_read_topic_id_list(device_id,user_id,TopicPageType.HOME_RECOMMEND)
have_read_lin_pictorial_id_list = Tools.get_have_read_lin_pictorial_id_list(device_id, user_id,
TopicPageType.HOME_RECOMMEND)
promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE1_DB_NAME).filter(is_online=1).values_list("topic_id",flat=True)
promote_lin_pictorial_id_list = CommunityPictorialHomeFeed.objects.using(settings.SLAVE1_DB_NAME).filter(
is_deleted=0, is_online=1).values_list("pictorial_id", flat=True)
have_read_topic_id_list.extend(promote_recommend_topic_id_list)
have_read_lin_pictorial_id_list.extend(promote_lin_pictorial_id_list)
recommend_topic_id_list = list()
recommend_topic_id_list_dict = dict()
recommend_topic_id_list_click = list()
recommend_topic_id_list_click_dict = dict()
recommend_lin_pictorial_id_list = list()
if click_topic_tag_list and len(click_topic_tag_list)>0:
click_topic_tag_list_same_tagset_ids = get_same_tagset_ids(click_topic_tag_list)
recommend_topic_id_list_click,recommend_topic_id_list_click_dict = ESPerform.get_tag_topic_list_dict(click_topic_tag_list_same_tagset_ids,
have_read_topic_id_list,size=2)
if len(recommend_topic_id_list_click) > 0:
recommend_topic_id_list.extend(recommend_topic_id_list_click)
recommend_topic_id_list_dict.update(recommend_topic_id_list_click_dict)
# have_read_topic_id_list.extend(recommend_topic_id_list_click)
# click_recommend_redis_key = self.click_recommend_redis_key_prefix + str(device_id)
# click_redis_data_dict = {
# "data": json.dumps(recommend_topic_id_list),
# "datadict":json.dumps(recommend_topic_id_list_dict),
# "cursor": 0
# }
# redis_client.hmset(click_recommend_redis_key, click_redis_data_dict)
tag_id_list = recommend_tag_list[0:20]
pictorial_recommend_redis_key = linucb_pictorial_ids_prefix + str(device_id)
topic_recommend_redis_key = linucb_topic_ids_prefix + str(device_id)
# redis_topic_data_dict = redis_client.hgetall(topic_recommend_redis_key)
# redis_topic_list = list()
# cursor = -1
# if b"data" in redis_topic_data_dict:
# redis_topic_list = json.loads(redis_topic_data_dict[b"data"]) if redis_topic_data_dict[
# b"data"] else []
# cursor = int(str(redis_topic_data_dict[b"cursor"], encoding="utf-8"))
# if len(recommend_topic_id_list)==0 and cursor==0 and len(redis_topic_list)>0:
# have_read_topic_id_list.extend(redis_topic_list[:2])
if len(new_user_click_tag_list)>0:
new_user_click_tag_list_same_tagset_ids = get_same_tagset_ids(new_user_click_tag_list)
tag_topic_id_list,tag_topic_dict = ESPerform.get_tag_topic_list_dict(new_user_click_tag_list_same_tagset_ids, have_read_topic_id_list)
recommend_lin_pictorial_id_list = ESPerform.get_tag_pictorial_id_list(new_user_click_tag_list_same_tagset_ids,
have_read_lin_pictorial_id_list)
else:
tag_id_list_same_tagset_ids = get_same_tagset_ids(tag_id_list)
tag_topic_id_list,tag_topic_dict = ESPerform.get_tag_topic_list_dict(tag_id_list_same_tagset_ids,have_read_topic_id_list)
recommend_lin_pictorial_id_list = ESPerform.get_tag_pictorial_id_list(tag_id_list_same_tagset_ids,
have_read_lin_pictorial_id_list)
if len(recommend_topic_id_list)>0 or len(tag_topic_id_list)>0 or len(new_user_click_tag_list) > 0:
tag_topic_id_list = recommend_topic_id_list + tag_topic_id_list
tag_topic_dict.update(recommend_topic_id_list_dict)
redis_data_dict = {
"data": json.dumps(tag_topic_id_list),
"datadict":json.dumps(tag_topic_dict),
"cursor":0
}
redis_client.hmset(topic_recommend_redis_key,redis_data_dict)
if len(recommend_lin_pictorial_id_list) > 0:
pictorial_data_dict = {
"data": json.dumps(recommend_lin_pictorial_id_list),
"cursor": 0
}
redis_client.hmset(pictorial_recommend_redis_key, pictorial_data_dict)
return True
except:
logging_exception()
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return False
def update_user_linucb_tag_info(self, reward, device_id, tag_id, user_feature, linucb_matrix_redis_prefix):
try:
user_feature = user_feature if user_feature else self.user_feature
return LinUCB.update_linucb_info(user_feature, reward, tag_id, device_id, linucb_matrix_redis_prefix, redis_client)
except:
logging_exception()
logging.error("update_user_linucb_tag_info error!")
return False
def transfer_old_info2ctr_feature_key(self, device_id):
try:
# 移植老用户的lin标签参数信息到ctr特征策略
ctr_linucb_matrix_redis_prefix_key = self.ctr_linucb_matrix_redis_prefix + str(device_id)
linucb_matrix_redis_prefix_key = self.linucb_matrix_redis_prefix + str(device_id)
if redis_client.exists(ctr_linucb_matrix_redis_prefix_key): #如果新策略存在lin信息,则不需要移植
return True
else:
if redis_client.exists(linucb_matrix_redis_prefix_key):
older_device_info = redis_client.hgetall(linucb_matrix_redis_prefix_key)
redis_client.hmset(ctr_linucb_matrix_redis_prefix_key, older_device_info)
# 移植老用户的lin推荐标签列表信息到ctr特征策略
ctr_linucb_recommend_redis_prefix = self.ctr_linucb_recommend_redis_prefix + str(device_id)
linucb_recommend_redis_prefix = self.linucb_recommend_redis_prefix + str(device_id)
if not redis_client.exists(ctr_linucb_recommend_redis_prefix):
if redis_client.exists(linucb_recommend_redis_prefix):
older_device_info = redis_client.get(linucb_recommend_redis_prefix)
redis_client.set(ctr_linucb_recommend_redis_prefix, older_device_info)
# 移植老用户的lin帖子推荐队列信息到ctr特征策略
linucb_recommend_topic_id_prefix = self.linucb_recommend_topic_id_prefix + str(device_id)
ctr_linucb_recommend_topic_id_prefix = self.ctr_linucb_recommend_topic_id_prefix + str(device_id)
if not redis_client.exists(ctr_linucb_recommend_topic_id_prefix):
if redis_client.exists(linucb_recommend_topic_id_prefix):
older_device_info = redis_client.hgetall(linucb_recommend_topic_id_prefix)
redis_client.hmset(ctr_linucb_recommend_topic_id_prefix, older_device_info)
# 移植老用户的lin榜单推荐队列信息到ctr特征策略
linucb_recommend_pictorial_id_prefix = self.linucb_recommend_pictorial_id_prefix + str(device_id)
ctr_linucb_recommend_pictorial_id_prefix = self.ctr_linucb_recommend_pictorial_id_prefix + str(device_id)
if not redis_client.exists(ctr_linucb_recommend_pictorial_id_prefix):
if redis_client.exists(linucb_recommend_pictorial_id_prefix):
older_device_info = redis_client.hgetall(linucb_recommend_pictorial_id_prefix)
redis_client.hmset(ctr_linucb_recommend_pictorial_id_prefix, older_device_info)
logging.info("transfer_old_info2ctr_feature_key sucess:"+str(device_id))
return True
except:
logging_exception()
logging.error("transfer_old_info2ctr_feature_key error!")
return False
def get_device_tag_ctr(self, device_id, tag_id):
# 获取用户在该tag下的ctr信息
try:
device_tag_ctr = LikeDeviceTagStat.objects.using(settings.SLAVE1_DB_NAME).filter(
device_id=device_id, tag_id=tag_id).values("tag_ctr_30")
if device_tag_ctr:
device_tag_ctr_value = device_tag_ctr[0].get("tag_ctr_30", 0.0)
else:
device_tag_ctr_value = 0.0
logging.info("get_device_tag_ctr" + str(device_id) + str(tag_id))
return device_tag_ctr_value
except:
logging_exception()
logging.error("get_device_tag_ctr error!")
return 0.0
def consume_data_from_kafka(self,topic_name=None):
try:
user_feature = [1, 1]
kafka_consumer_obj = KafkaManager.get_kafka_consumer_ins(topic_name)
while True:
msg_dict = kafka_consumer_obj.poll(timeout_ms=100)
for msg_key in msg_dict:
consume_msg = msg_dict[msg_key]
for ori_msg in consume_msg:
try:
raw_val_dict,msg = loads_data(ori_msg.value)
if msg:
logging.info(ori_msg.value)
if "type" in raw_val_dict and \
(raw_val_dict["type"] in ("on_click_feed_topic_card","on_click_button")):
click_topic_tag_list = list()
if "on_click_feed_topic_card" == raw_val_dict["type"]:
topic_id = raw_val_dict["params"]["topic_id"]
device_id = raw_val_dict["device"]["device_id"]
user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
logging.info("consume topic_id:%s,device_id:%s" % (str(topic_id), str(device_id)))
# topic_tag_list = list(TopicTag.objects.using(settings.SLAVE_DB_NAME).filter(topic_id=topic_id,is_online=True).values_list("tag_id",flat=True))
# tag_query_results = Tag.objects.using(settings.SLAVE_DB_NAME).filter(id__in=topic_tag_list,is_online=True,is_deleted=False).values_list("id","collection","is_ai")
# for id,collection,is_ai in tag_query_results:
# if collection and is_ai:
# click_topic_tag_list.append(id)
topic_tag_list = list()
click_results = TopicTag.objects.using(settings.SLAVE1_DB_NAME).filter(
topic_id=topic_id, is_online=True).values_list("tag_id", "is_collection")
for tag_id, is_collection in click_results:
# topic_tag_list.append(tag_id)
if is_collection:
topic_tag_list.append(tag_id)
tag_query_results = Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
id__in=topic_tag_list, is_online=True, is_deleted=False, is_category=False).values_list("id",
"is_ai")
for id, is_ai in tag_query_results:
click_topic_tag_list.append(id)
logging.info("positive tag_list,device_id:%s,topic_id:%s,tag_list:%s" % (
str(device_id), str(topic_id), str(click_topic_tag_list)))
elif raw_val_dict["type"] == "on_click_button" and "page_name" in \
raw_val_dict["params"] and "button_name" in raw_val_dict["params"] \
and "extra_param" in raw_val_dict["params"]:
if raw_val_dict["params"]["page_name"] == "search_detail" and \
raw_val_dict["params"]["button_name"] == "focus_tag":
tag_name = raw_val_dict["params"]["extra_param"]
device_id = raw_val_dict["device"]["device_id"]
user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
tag_list = list(Tag.objects.using(settings.SLAVE1_DB_NAME).filter(name=tag_name,is_online=True,is_deleted=False, is_category=False).values_list("id",flat=True))
click_topic_tag_list.extend(tag_list)
logging.info("query tag attention,positive tag_list,device_id:%s,query_name:%s,tag_list:%s" % (
str(device_id), tag_name, str(click_topic_tag_list)))
logging.info("click_topic_tag_list:%s"%(str(click_topic_tag_list)))
is_click = 1
is_vote = 0
reward = 1 if is_click or is_vote else 0
# 移植老用户的lin信息到ctr特征策略
self.transfer_old_info2ctr_feature_key(device_id)
# 更新不同策略的lin标签参数信息
for tag_id in click_topic_tag_list:
self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
self.linucb_matrix_redis_prefix)
# 获取tag的ctr信息
device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
user_feature_ctr = [device_tag_ctr, device_tag_ctr]
self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature_ctr,
self.ctr_linucb_matrix_redis_prefix)
# 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
if len(click_topic_tag_list)>0:
self.update_recommend_tag_list(device_id, user_feature, user_id,
click_topic_tag_list=click_topic_tag_list,
linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
self.update_recommend_tag_list(device_id, user_feature, user_id,
click_topic_tag_list=click_topic_tag_list,
linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
# elif "type" in raw_val_dict and "page_precise_exposure" == raw_val_dict["type"]:
# if isinstance(raw_val_dict["params"]["exposure_cards"],str):
# exposure_cards_list = json.loads(raw_val_dict["params"]["exposure_cards"])
# elif isinstance(raw_val_dict["params"]["exposure_cards"],list):
# exposure_cards_list = raw_val_dict["params"]["exposure_cards"]
# else:
# exposure_cards_list = list()
# device_id = raw_val_dict["device"]["device_id"]
# user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
# logging.warning("type msg:%s" % raw_val_dict.get("type"))
# exposure_topic_id_list = list()
# for item in exposure_cards_list:
# if "card_id" not in item:
# continue
# exposure_topic_id = item["card_id"]
# logging.info(
# "consume exposure topic_id:%s,device_id:%s" % (str(exposure_topic_id), str(device_id)))
# if exposure_topic_id:
# exposure_topic_id_list.append(exposure_topic_id)
#
# topic_tag_id_dict = dict()
# tag_list = list()
# exposure_sql_query_results = TopicTag.objects.using(settings.SLAVE_DB_NAME).\
# filter(topic_id__in=exposure_topic_id_list).\
# values_list("topic_id","tag_id","is_online","is_collection")
# # if len(exposure_sql_query_results)>0:
# for topic_id,tag_id,is_online,is_collection in exposure_sql_query_results:
# if is_online and is_collection == 1:
# tag_list.append(tag_id)
# if is_online:
# tag_sql_query_results = Tag.objects.using(settings.SLAVE_DB_NAME).filter(
# id=tag_id).values_list("id", "collection", "is_ai")
# for id, collection, is_ai in tag_sql_query_results:
# if (is_ai == 1) and id not in tag_list:
# tag_list.append(id)
#
# if topic_id not in topic_tag_id_dict:
# topic_tag_id_dict[topic_id] = list()
# topic_tag_id_dict[topic_id].append(tag_id)
#
# is_click = 0
# is_vote = 0
#
# reward = 1 if is_click or is_vote else 0
#
# logging.info("negative tag_list,device_id:%s,topic_tag_id_dict:%s" % (
# str(device_id), str(topic_tag_id_dict)))
# for tag_id in tag_list:
# self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature)
#
# # 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
# self.update_recommend_tag_list(device_id, user_feature, user_id)
elif "type" in raw_val_dict and "interest_choice_click_next" == raw_val_dict["type"]:
if isinstance(raw_val_dict["params"]["tagid_list"],str):
tagid_list = json.loads(raw_val_dict["params"]["tagid_list"])
elif isinstance(raw_val_dict["params"]["tagid_list"],list):
tagid_list = raw_val_dict["params"]["tagid_list"]
else:
tagid_list = list()
logging.warning("unknown type msg:%s" % raw_val_dict.get("type", "missing type"))
device_id = raw_val_dict["device"]["device_id"]
user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
# if len(exposure_sql_query_results)>0:
if len(tagid_list) > 0:
tag_query_results = list(Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
id__in=tagid_list, is_online=True, is_deleted=False,
is_category=False).values_list("id",flat =True))
is_click = 1
is_vote = 0
reward = 1 if is_click or is_vote else 0
# 移植老用户的lin信息到ctr特征策略
self.transfer_old_info2ctr_feature_key(device_id)
for tag_id in tag_query_results:
self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
self.linucb_matrix_redis_prefix)
# 获取tag的ctr信息
device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
user_feature_ctr = [device_tag_ctr, device_tag_ctr]
self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature_ctr,
self.ctr_linucb_matrix_redis_prefix)
# 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
self.update_recommend_tag_list(device_id, user_feature, user_id,
new_user_click_tag_list=tag_query_results,
linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
self.update_recommend_tag_list(device_id, user_feature, user_id,
new_user_click_tag_list=tag_query_results,
linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
else:
logging.warning("unknown type msg:%s" % raw_val_dict.get("type", "missing type"))
# 用户点击个性化push进linucb
elif "type" in raw_val_dict and raw_val_dict["type"] == "on_click_push":
# 后端已过滤,该tag_ids是帖子/榜单的编辑标签
if "tag_ids" in raw_val_dict["params"]:
tag_ids = raw_val_dict["params"]["tag_ids"]
else:
# todo 客户端埋点bug,后期移除
tag_ids = raw_val_dict["params"].get("tag_ids:", [])
if isinstance(tag_ids, str):
tagid_list = json.loads(tag_ids)
elif isinstance(tag_ids, list):
tagid_list = tag_ids
else:
tagid_list = list()
device_id = raw_val_dict["device"]["device_id"]
user_id = raw_val_dict["user_id"] if "user_id" in raw_val_dict else None
if len(tagid_list) > 0:
tag_query_results = Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
id__in=tagid_list, is_online=True, is_deleted=False,
is_category=False).values_list("id", flat=True)
is_click = 1
is_vote = 0
reward = 1 if is_click or is_vote else 0
for tag_id in tag_query_results:
self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
self.linucb_matrix_redis_prefix)
# 获取tag的ctr信息
device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
user_feature_ctr = [device_tag_ctr, device_tag_ctr]
self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature_ctr,
self.ctr_linucb_matrix_redis_prefix)
self.update_recommend_tag_list(device_id, user_feature, user_id,
linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
self.update_recommend_tag_list(device_id, user_feature, user_id,
linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
logging.info("on_click_push topic type:%s, device_id:%s, tag_ids:%s" %
(raw_val_dict.get("type", "missing type"), str(device_id),
str(tagid_list)))
# 用户点击问题清单进linucb
elif b'content' in raw_val_dict:
data = json.loads(raw_val_dict[b'content'])
if 'SYS' in data and 'APP' in data and 'action' in data['SYS'] and data['SYS']['action'] == "venus/community/skin_check/submit_questions":
device_id = data['SYS']['cl_id']
tagid_list = list(data['APP'].get('answer_tag', []))
user_id = data['SYS'].get('user_id', None)
logging.info("skin_check topic type:%s, device_id:%s, answer_tag:%s" %
(str(data['SYS']['action']), str(device_id), str(tagid_list)))
if len(tagid_list) > 0:
tag_query_results = list(Tag.objects.using(settings.SLAVE1_DB_NAME).filter(
id__in=tagid_list, is_online=True, is_deleted=False,
is_category=False).values_list("id", flat=True))
tag_query_results_multi = [i for i in tagid_list if i in tag_query_results]
is_click = 1
is_vote = 0
reward = 1 if is_click or is_vote else 0
for i in range(5):
for tag_id in tag_query_results_multi:
self.update_user_linucb_tag_info(reward, device_id, tag_id, user_feature,
self.linucb_matrix_redis_prefix)
# 获取tag的ctr信息
device_tag_ctr = self.get_device_tag_ctr(device_id, tag_id)
user_feature_ctr = [device_tag_ctr, device_tag_ctr]
self.update_user_linucb_tag_info(reward, device_id, tag_id,
user_feature_ctr,
self.ctr_linucb_matrix_redis_prefix)
# 更新该用户的推荐tag数据,放在 更新完成user tag行为信息之后
self.update_recommend_tag_list(device_id, user_feature, user_id,
linucb_matrix_prefix=self.linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.linucb_recommend_pictorial_id_prefix)
self.update_recommend_tag_list(device_id, user_feature, user_id,
linucb_matrix_prefix=self.ctr_linucb_matrix_redis_prefix,
linucb_recommend_tag_prefix=self.ctr_linucb_recommend_redis_prefix,
linucb_topic_ids_prefix=self.ctr_linucb_recommend_topic_id_prefix,
linucb_pictorial_ids_prefix=self.ctr_linucb_recommend_pictorial_id_prefix)
logging.info("skin_check topic type:%s, device_id:%s, tag_query_results:%s" %
(str(data['SYS']['action']), str(device_id), str(tag_query_results)))
else:
if msg:
logging.warning("unknown type msg:%s" % raw_val_dict.get("type", "missing type"))
except:
logging_exception()
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
# 假设数据库连接异常,强制退出程序,supervisor重启linub
os._exit(0)
return True
except:
logging_exception()
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
return False