1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import django.db.models
from django.conf import settings
from django.core.management.base import BaseCommand, CommandError
import traceback
import logging
import six
import sys
from libs.es import ESPerform
import trans2es.models as md
from trans2es.utils import topic_transfer
from libs.table_scan import TableSlicer,TableSlicerChunk
from trans2es.type_info import get_type_info_map,TypeInfo
from libs.cache import redis_client
from trans2es.models.face_user_contrast_similar import FaceUserContrastSimilar
import json
from search.utils.topic import TopicUtils
from trans2es.models.pick_topic import PickTopic
from trans2es.models.tag import TopicTag,Tag
from trans2es.models.user_extra import UserExtra
from trans2es.models.group import Group
from trans2es.models.topic import Topic,ActionSumAboutTopic
from search.utils.common import *
from linucb.views.collect_data import CollectData
from injection.data_sync.tasks import sync_user_similar_score
class Job(object):
__es = None
def __init__(self, sub_index_name, type_name, chunk):
assert isinstance(sub_index_name, six.string_types)
assert isinstance(type_name, six.string_types)
assert isinstance(chunk, TableSlicerChunk)
self._sub_index_name = sub_index_name
self._type_name = type_name
self._chunk = chunk
@classmethod
def get_es(cls):
if cls.__es is None:
cls.__es = ESPerform().get_cli()
return cls.__es
def __call__(self):
type_info = get_type_info_map()[self._type_name]
assert isinstance(type_info, TypeInfo)
result = type_info.insert_table_chunk(
sub_index_name=self._sub_index_name,
table_chunk=self._chunk,
es=self.get_es(),
)
class SyncDataToRedis(object):
@classmethod
def sync_face_similar_data_to_redis(cls):
try:
result_items = FaceUserContrastSimilar.objects.filter(is_online=True,
is_deleted=False).distinct().values(
"participant_user_id").values_list("participant_user_id", flat=True)
logging.info("duan add,begin sync_face_similar_data_to_redis!")
redis_key_prefix = "physical:user_similar:participant_user_id:"
for participant_user_id in result_items:
redis_key = redis_key_prefix + str(participant_user_id)
similar_result_items = FaceUserContrastSimilar.objects.filter(is_online=True, is_deleted=False,
participant_user_id=participant_user_id,
similarity__gt=0.3).order_by(
"-similarity")
item_list = list()
for item in similar_result_items:
item_list.append(
{
"contrast_user_id": item.contrast_user_id,
"similarity": item.similarity
}
)
redis_client.set(redis_key, json.dumps(item_list))
logging.info("duan add,participant_user_id:%d set data done!" % participant_user_id)
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
class Command(BaseCommand):
args = ''
help = 'dump data to elasticsearch, parallel'
from optparse import make_option
option_list = BaseCommand.option_list + (
make_option('-t', '--type', dest='type', help='type name to dump data to elasticsearch', metavar='TYPE',default=''),
make_option('-i', '--index-prefix', dest='index_prefix', help='index name to dump data to elasticsearch', metavar='INDEX_PREFIX'),
make_option('-p', '--parallel', dest='parallel', help='parallel process count', metavar='PARALLEL'),
make_option('-s', '--pks', dest='pks', help='specify sync pks, comma separated', metavar='PKS', default=''),
make_option('--streaming-slicing', dest='streaming_slicing', action='store_true', default=True),
make_option('--no-streaming-slicing', dest='streaming_slicing', action='store_false', default=True),
make_option('-S', '--sync_type',dest='sync_type', help='sync data to es',metavar='TYPE',default=''),
make_option('-T', '--test_score', dest='test_score', help='test_score', metavar='TYPE', default='')
)
def __sync_data_by_type(self, type_name):
try:
type_info = get_type_info_map()[type_name]
query_set = type_info.queryset
slicer = TableSlicer(queryset=query_set, chunk_size=type_info.bulk_insert_chunk_size)
for chunk in slicer.chunks():
job = Job(
sub_index_name=type_name,
type_name=type_name,
chunk=chunk,
)
job()
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
def generate_topic_score_detail(self):
try:
topic_id_dict = TopicUtils.get_recommend_topic_ids(241432787,0, 0, 500,query_type=TopicPageType.HOME_RECOMMEND,test_score=True)
for topic_id in topic_id_dict:
offline_score = 0.0
user_is_shadow = False
topic_sql_item = Topic.objects.filter(id=topic_id)
user_is_recommend=0.0
# 是否官方推荐用户
user_query_results = UserExtra.objects.filter(user_id=topic_sql_item[0].user_id)
if user_query_results.count() > 0:
if user_query_results[0].is_recommend:
offline_score += 2.0
user_is_recommend = 2.0
elif user_query_results[0].is_shadow:
user_is_shadow = True
group_is_recommend=0.0
# 是否官方推荐小组
# if topic_sql_item[0].group and topic_sql_item[0].group.is_recommend:
# offline_score += 4.0
# group_is_recommend = 4.0
topic_level_score = 0.0
# 帖子等级
if topic_sql_item[0].content_level == '5':
offline_score += 6.0
topic_level_score = 6.0
elif topic_sql_item[0].content_level == '4':
offline_score += 5.0
topic_level_score = 5.0
elif topic_sql_item[0].content_level == '3':
offline_score += 2.0
topic_level_score = 2.0
exposure_count = ActionSumAboutTopic.objects.filter(topic_id=topic_id, data_type=1).count()
click_count = ActionSumAboutTopic.objects.filter(topic_id=topic_id, data_type=2).count()
uv_num = ActionSumAboutTopic.objects.filter(topic_id=topic_id, data_type=3).count()
exposure_score = 0.0
uv_score = 0.0
if exposure_count > 0:
offline_score += click_count / exposure_count
exposure_score = click_count / exposure_count
if uv_num > 0:
offline_score += (topic_sql_item[0].vote_num / uv_num + topic_sql_item[0].reply_num / uv_num)
uv_score = (topic_sql_item[0].vote_num / uv_num + topic_sql_item[0].reply_num / uv_num)
"""
1:马甲账号是否对总分降权?
"""
if user_is_shadow:
offline_score = offline_score * 0.5
logging.info("test_score######topic_id:%d,score:%f,offline_score:%f,user_is_recommend:%f,group_is_recommend:%f,topic_level_score:%f,exposure_score:%f,uv_score:%f"
% (topic_id,topic_id_dict[topic_id][2],offline_score,user_is_recommend,group_is_recommend,topic_level_score,exposure_score,uv_score))
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())
def handle(self, *args, **options):
try:
type_name_list = get_type_info_map().keys()
for type_name in type_name_list:
if len(options["type"]):
if options["type"] == "all" or type_name==options["type"]:
logging.info("begin sync [%s] data to es!" % type_name)
self.__sync_data_by_type(type_name)
if len(options["sync_type"]) and options["sync_type"]=="sync_data_to_es":
SyncDataToRedis.sync_face_similar_data_to_redis()
if len(options["test_score"]):
self.generate_topic_score_detail()
if len(options["sync_type"]) and options["sync_type"]=="linucb":
collect_obj = CollectData()
collect_obj.consume_data_from_kafka()
if len(options["sync_type"]) and options["sync_type"]=="similar":
sync_user_similar_score()
except:
logging.error("catch exception,err_msg:%s" % traceback.format_exc())