Commit 24529ca5 authored by 段英荣's avatar 段英荣

modify home_recommend

parent 33ae89e9
......@@ -196,25 +196,6 @@ class TopicUtils(object):
"weight": 30,
}
)
# if len(pick_user_id_list) > 0:
# functions_list.append(
# {
# "filter": {"bool": {
# "should": {"terms": {"user_id": pick_user_id_list}}}},
# "weight": 2
# }
# )
# if len(same_pictorial_id_list) > 0:
# functions_list.append(
# {
# "filter": {"bool": {
# "should": {"terms": {"user_id": same_pictorial_id_list}}}},
# "weight": 1
# }
# )
# query_tag_term_list = cls.___get_should_term_list(user_tag_list)
if len(attention_tag_list) > 0:
functions_list.append(
{
......@@ -223,35 +204,6 @@ class TopicUtils(object):
"weight": 100
}
)
# if len(recommend_tag_list)>0:
# if len(recommend_tag_list)>1:
# functions_list += [
# {
# "filter": {"term": {"tag_list": recommend_tag_list[0]}},
# "weight": 4
# },
# {
# "filter": {"terms": {"tag_list": recommend_tag_list[1:]}},
# "weight": 3
# }
# ]
# else:
# functions_list.append(
# {
# "filter": {"terms": {"tag_list": recommend_tag_list}},
# "weight": 3
# }
# )
# for tag_id in recommend_tag_dict:
# functions_list.append(
# {
# "filter": {"term": {"tag_list": tag_id}},
# "weight": recommend_tag_dict[tag_id]
# }
# )
# low_content_level = 4 if query_type == TopicPageType.FIND_PAGE else 3
query_function_score = {
"query": {
"bool": {
......@@ -291,11 +243,9 @@ class TopicUtils(object):
}
}
if len(filter_topic_id_list) > 0:
query_function_score["query"]["bool"]["must_not"] = {
"terms": {
"id": filter_topic_id_list
}
}
query_function_score["query"]["bool"]["must_not"] = [
{"terms":{"id":filter_topic_id_list}}
]
if query is not None: # 搜索帖子
multi_fields = {
......@@ -317,7 +267,15 @@ class TopicUtils(object):
{"term": {"tag_list": tag_id}}
]
query_function_score["query"]["bool"]["minimum_should_match"] = 1
else:
if "must_not" in query_function_score["query"]["bool"]:
query_function_score["query"]["bool"]["must_not"] += [
{"term": {"is_operation_home_recommend": True}}
]
else:
query_function_score["query"]["bool"]["must_not"] = [
{"term": {"is_operation_home_recommend": True}}
]
q["query"]["function_score"] = query_function_score
q["collapse"] = {
"field": "user_id"
......
......@@ -73,47 +73,46 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
if offset>0: # 首次搜索时不需要过滤已读
have_read_topic_id_list = list(json.loads(redis_field_val_list[0]))
# linucb 推荐帖子
topic_recommend_redis_key = "physical:linucb:topic_recommend:device_id:" + str(device_id)
recommend_topic_list=list()
recommend_topic_dict = redis_client.hgetall(topic_recommend_redis_key)
if b"data" in recommend_topic_dict:
recommend_topic_id_list = json.loads(recommend_topic_dict[b"data"])
# 推荐帖子是强插的,要保证推荐帖子不在已读里
recommend_topic_id_list = list(set(recommend_topic_id_list)-set(have_read_topic_id_list))
cursor = int(str(recommend_topic_dict[b"cursor"], encoding="utf-8"))
newcursor = cursor + 6
if len(recommend_topic_id_list) > newcursor:
recommend_topic_list = recommend_topic_id_list[cursor:newcursor]
redis_client.hset(topic_recommend_redis_key,"cursor",newcursor)
user_similar_score_redis_key = "physical:user_similar_score:user_id:" + str(user_id)
redis_user_similar_score_redis_val = redis_client.get(user_similar_score_redis_key)
user_similar_score_redis_list = json.loads(
redis_user_similar_score_redis_val) if redis_user_similar_score_redis_val else []
recommend_topic_list = list()
if query is None:
# linucb 推荐帖子
topic_recommend_redis_key = "physical:linucb:topic_recommend:device_id:" + str(device_id)
recommend_topic_dict = redis_client.hgetall(topic_recommend_redis_key)
if b"data" in recommend_topic_dict:
recommend_topic_id_list = json.loads(recommend_topic_dict[b"data"])
# 推荐帖子是强插的,要保证推荐帖子不在已读里
recommend_topic_id_list = list(set(recommend_topic_id_list) - set(have_read_topic_id_list))
cursor = int(str(recommend_topic_dict[b"cursor"], encoding="utf-8"))
newcursor = cursor + 6
if len(recommend_topic_id_list) > newcursor:
recommend_topic_list = recommend_topic_id_list[cursor:newcursor]
redis_client.hset(topic_recommend_redis_key, "cursor", newcursor)
# 用户关注标签
redis_tag_data = redis_client.hget("physical:linucb:register_user_tag_info", user_id)
attention_tag_list = json.loads(redis_tag_data) if redis_tag_data else []
if len(recommend_topic_list)>0:
size = size-len(recommend_topic_list)
have_read_topic_id_list.extend(recommend_topic_list)
have_read_topic_id_list_add_promote = list()
have_read_topic_id_list_add_promote.extend(have_read_topic_id_list)
promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE_DB_NAME).filter(
is_online=1).values_list("topic_id",flat=True)
for topic_id in promote_recommend_topic_id_list:
have_read_topic_id_list_add_promote.append(topic_id)
# have_read_topic_id_list_add_promote = list()
# have_read_topic_id_list_add_promote.extend(have_read_topic_id_list)
# promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE_DB_NAME).filter(
# is_online=1).values_list("topic_id",flat=True)
#
# for topic_id in promote_recommend_topic_id_list:
# have_read_topic_id_list_add_promote.append(topic_id)
topic_id_list = list()
rank_topic_id_list = TopicUtils.get_recommend_topic_ids(user_id=user_id, tag_id=tag_id, offset=offset, size=size,
single_size=size,query=query, query_type=query_type,
filter_topic_id_list=have_read_topic_id_list_add_promote,
recommend_tag_list=recommend_topic_list,
filter_topic_id_list=have_read_topic_id_list,
user_similar_score_list=user_similar_score_redis_list,index_type="topic",routing="4,5,6",attention_tag_list=attention_tag_list)
if len(recommend_topic_list) == 6 and query is None:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment