Commit 2d654c9a authored by Igor Dejanovic's avatar Igor Dejanovic

Examples update.

parent 0a3d2c28
...@@ -42,12 +42,12 @@ class BibFileSem(SemanticAction): ...@@ -42,12 +42,12 @@ class BibFileSem(SemanticAction):
""" """
Just returns list of child nodes (bibentries). Just returns list of child nodes (bibentries).
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
if parser.debug: if parser.debug:
print "Processing Bibfile" print "Processing Bibfile"
# Return only dict nodes # Return only dict nodes
return [x for x in nodes if type(x) is dict] return [x for x in children if type(x) is dict]
class BibEntrySem(SemanticAction): class BibEntrySem(SemanticAction):
...@@ -55,14 +55,14 @@ class BibEntrySem(SemanticAction): ...@@ -55,14 +55,14 @@ class BibEntrySem(SemanticAction):
Constructs a map where key is bibentry field name. Constructs a map where key is bibentry field name.
Key is returned under 'bibkey' key. Type is returned under 'bibtype'. Key is returned under 'bibkey' key. Type is returned under 'bibtype'.
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
if parser.debug: if parser.debug:
print " Processing bibentry %s" % nodes[2] print " Processing bibentry %s" % children[2]
bib_entry_map = { bib_entry_map = {
'bibtype': nodes[0].value, 'bibtype': children[0].value,
'bibkey': nodes[2].value 'bibkey': children[2].value
} }
for field in nodes[3:]: for field in children[3:]:
if isinstance(field, tuple): if isinstance(field, tuple):
bib_entry_map[field[0]] = field[1] bib_entry_map[field[0]] = field[1]
return bib_entry_map return bib_entry_map
...@@ -72,10 +72,10 @@ class FieldSem(SemanticAction): ...@@ -72,10 +72,10 @@ class FieldSem(SemanticAction):
""" """
Constructs a tuple (fieldname, fieldvalue). Constructs a tuple (fieldname, fieldvalue).
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
if parser.debug: if parser.debug:
print " Processing field %s" % nodes[0] print " Processing field %s" % children[0]
field = (nodes[0].value, nodes[2]) field = (children[0].value, children[2])
return field return field
...@@ -84,8 +84,8 @@ class FieldValueSem(SemanticAction): ...@@ -84,8 +84,8 @@ class FieldValueSem(SemanticAction):
Serbian Serbian letters form latex encoding to Unicode. Serbian Serbian letters form latex encoding to Unicode.
Remove braces. Remove newlines. Remove braces. Remove newlines.
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
value = nodes[1].value value = children[1].value
value = value.replace(r"\'{c}", u"ć")\ value = value.replace(r"\'{c}", u"ć")\
.replace(r"\'{C}", u"Ć")\ .replace(r"\'{C}", u"Ć")\
.replace(r"\v{c}", u"č")\ .replace(r"\v{c}", u"č")\
...@@ -114,8 +114,7 @@ if __name__ == "__main__": ...@@ -114,8 +114,7 @@ if __name__ == "__main__":
# particulary handy for debugging purposes. # particulary handy for debugging purposes.
# We can make a jpg out of it using dot (part of graphviz) like this # We can make a jpg out of it using dot (part of graphviz) like this
# dot -O -Tjpg calc_parse_tree_model.dot # dot -O -Tjpg calc_parse_tree_model.dot
PMDOTExporter().exportFile(parser.parser_model, PMDOTExporter().exportFile(parser.parser_model, "bib_parse_tree_model.dot")
"bib_parse_tree_model.dot")
# First parameter is bibtex file # First parameter is bibtex file
if len(sys.argv) > 1: if len(sys.argv) > 1:
...@@ -127,8 +126,7 @@ if __name__ == "__main__": ...@@ -127,8 +126,7 @@ if __name__ == "__main__":
parse_tree = parser.parse(bibtexfile_content) parse_tree = parser.parse(bibtexfile_content)
# Then we export it to a dot file in order to visualise it. # Then we export it to a dot file in order to visualise it.
PTDOTExporter().exportFile(parse_tree, PTDOTExporter().exportFile(parse_tree, "bib_parse_tree.dot")
"bib_parse_tree.dot")
# getASG will start semantic analysis. # getASG will start semantic analysis.
# In this case semantic analysis will list of bibentry maps. # In this case semantic analysis will list of bibentry maps.
......
...@@ -27,7 +27,7 @@ class ToFloat(SemanticAction): ...@@ -27,7 +27,7 @@ class ToFloat(SemanticAction):
""" """
Converts node value to float. Converts node value to float.
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Converting %s." % node.value print "Converting %s." % node.value
return float(node.value) return float(node.value)
...@@ -35,32 +35,32 @@ class Factor(SemanticAction): ...@@ -35,32 +35,32 @@ class Factor(SemanticAction):
""" """
Removes parenthesis if exists and returns what was contained inside. Removes parenthesis if exists and returns what was contained inside.
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Factor %s" % nodes print "Factor %s" % children
if len(nodes) == 1: if len(children) == 1:
return nodes[0] return children[0]
sign = -1 if nodes[0] == '-' else 1 sign = -1 if children[0] == '-' else 1
next = 0 next = 0
if nodes[0] in ['+', '-']: if children[0] in ['+', '-']:
next = 1 next = 1
if nodes[next] == '(': if children[next] == '(':
return sign * nodes[next+1] return sign * children[next+1]
else: else:
return sign * nodes[next] return sign * children[next]
class Term(SemanticAction): class Term(SemanticAction):
""" """
Divides or multiplies factors. Divides or multiplies factors.
Factor nodes will be already evaluated. Factor nodes will be already evaluated.
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Term %s" % nodes print "Term %s" % children
term = nodes[0] term = children[0]
for i in range(2, len(nodes), 2): for i in range(2, len(children), 2):
if nodes[i-1]=="*": if children[i-1]=="*":
term *= nodes[i] term *= children[i]
else: else:
term /= nodes[i] term /= children[i]
print "Term = %f" % term print "Term = %f" % term
return term return term
...@@ -69,26 +69,26 @@ class Expr(SemanticAction): ...@@ -69,26 +69,26 @@ class Expr(SemanticAction):
Adds or substracts terms. Adds or substracts terms.
Term nodes will be already evaluated. Term nodes will be already evaluated.
""" """
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Expression %s" % nodes print "Expression %s" % children
expr = 0 expr = 0
start = 0 start = 0
# Check for unary + or - operator # Check for unary + or - operator
if str(nodes[0]) in "+-": if str(children[0]) in "+-":
start = 1 start = 1
for i in range(start, len(nodes), 2): for i in range(start, len(children), 2):
if i and nodes[i-1]=="-": if i and children[i-1]=="-":
expr -= nodes[i] expr -= children[i]
else: else:
expr += nodes[i] expr += children[i]
print "Expression = %f" % expr print "Expression = %f" % expr
return expr return expr
class Calc(SemanticAction): class Calc(SemanticAction):
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
return nodes[0] return children[0]
# Connecting rules with semantic actions # Connecting rules with semantic actions
number.sem = ToFloat() number.sem = ToFloat()
...@@ -98,34 +98,30 @@ expression.sem = Expr() ...@@ -98,34 +98,30 @@ expression.sem = Expr()
calc.sem = Calc() calc.sem = Calc()
if __name__ == "__main__": if __name__ == "__main__":
try:
# First we will make a parser - an instance of the calc parser model. # First we will make a parser - an instance of the calc parser model.
# Parser model is given in the form of python constructs therefore we # Parser model is given in the form of python constructs therefore we
# are using ParserPython class. # are using ParserPython class.
parser = ParserPython(calc) parser = ParserPython(calc)
# Then we export it to a dot file in order to visualise it. # Then we export it to a dot file in order to visualise it.
# This step is optional but it is handy for debugging purposes. # This step is optional but it is handy for debugging purposes.
# We can make a png out of it using dot (part of graphviz) like this # We can make a png out of it using dot (part of graphviz) like this
# dot -O -Tpng calc_parse_tree_model.dot # dot -O -Tpng calc_parse_tree_model.dot
PMDOTExporter().exportFile(parser.parser_model, PMDOTExporter().exportFile(parser.parser_model, "calc_parse_tree_model.dot")
"calc_parse_tree_model.dot")
# An expression we want to evaluate
# An expression we want to evaluate input = "-(4-1)*5+(2+4.67)+5.89/(.2+7)"
input = "-(4-1)*5+(2+4.67)+5.89/(.2+7)"
# We create a parse tree out of textual input
# We create a parse tree out of textual input parse_tree = parser.parse(input)
parse_tree = parser.parse(input)
# Then we export it to a dot file in order to visualise it.
# Then we export it to a dot file in order to visualise it. # This is also optional.
# This is also optional. PTDOTExporter().exportFile(parse_tree, "calc_parse_tree.dot")
PTDOTExporter().exportFile(parse_tree,
"calc_parse_tree.dot") # getASG will start semantic analysis.
# In this case semantic analysis will evaluate expression and
# getASG will start semantic analysis. # returned value will be the result of the input expression.
# In this case semantic analysis will evaluate expression and print "%s = %f" % (input, parser.getASG())
# returned value will be the result of the input expression.
print "%s = %f" % (input, parser.getASG())
except NoMatch, e:
print "Expected %s at position %s." % (e.value, str(e.parser.pos_to_linecol(e.position)))
...@@ -39,33 +39,28 @@ sem_actions = { ...@@ -39,33 +39,28 @@ sem_actions = {
"calc" : Calc() "calc" : Calc()
} }
try:
# First we will make a parser - an instance of the calc parser model. # First we will make a parser - an instance of the calc parser model.
# Parser model is given in the form of PEG notation therefore we # Parser model is given in the form of PEG notation therefore we
# are using ParserPEG class. Root rule name (parsing expression) is "calc". # are using ParserPEG class. Root rule name (parsing expression) is "calc".
parser = ParserPEG(calc_grammar, "calc", debug=True) parser = ParserPEG(calc_grammar, "calc", debug=True)
# Then we export it to a dot file. # Then we export it to a dot file.
PMDOTExporter().exportFile(parser.parser_model, PMDOTExporter().exportFile(parser.parser_model, "calc_peg_parser_model.dot")
"calc_peg_parser_model.dot")
# An expression we want to evaluate # An expression we want to evaluate
input = "-(4-1)*5+(2+4.67)+5.89/(.2+7)" input = "-(4-1)*5+(2+4.67)+5.89/(.2+7)"
# Then parse tree is created out of the input expression. # Then parse tree is created out of the input expression.
parse_tree = parser.parse(input) parse_tree = parser.parse(input)
# We save it to dot file in order to visualise it. # We save it to dot file in order to visualise it.
PTDOTExporter().exportFile(parse_tree, PTDOTExporter().exportFile(parse_tree, "calc_peg_parse_tree.dot")
"calc_peg_parse_tree.dot")
# getASG will start semantic analysis. # getASG will start semantic analysis.
# In this case semantic analysis will evaluate expression and # In this case semantic analysis will evaluate expression and
# returned value will be evaluated result of the input expression. # returned value will be evaluated result of the input expression.
# Semantic actions are supplied to the getASG function. # Semantic actions are supplied to the getASG function.
print "%s = %f" % (input, parser.getASG(sem_actions)) print "%s = %f" % (input, parser.getASG(sem_actions))
except NoMatch, e:
print "Expected %s at position %s." % (e.value, str(e.parser.pos_to_linecol(e.position)))
...@@ -26,29 +26,24 @@ Unquoted test 2, "Quoted test with ""inner"" quotes", 23234, One Two Three, "343 ...@@ -26,29 +26,24 @@ Unquoted test 2, "Quoted test with ""inner"" quotes", 23234, One Two Three, "343
Unquoted test 3, "Quoted test 3", 23234, One Two Three, "343456.45" Unquoted test 3, "Quoted test 3", 23234, One Two Three, "343456.45"
''' '''
try: # First we will make a parser - an instance of the CVS parser model.
# First we will make a parser - an instance of the CVS parser model. # Parser model is given in the form of python constructs therefore we
# Parser model is given in the form of python constructs therefore we # are using ParserPython class.
# are using ParserPython class. # Skipping of whitespace will be done only for tabs and spaces. Newlines
# Skipping of whitespace will be done only for tabs and spaces. Newlines # have semantics in csv files. They are used to separate records.
# have semantics in csv files. They are used to separate records. parser = ParserPython(csvfile, ws='\t ', reduce_tree=True, debug=True)
parser = ParserPython(csvfile, ws='\t ', reduce_tree=True, debug=True)
# Then we export it to a dot file in order to visualise it.
# Then we export it to a dot file in order to visualise it. # This step is optional but it is handy for debugging purposes.
# This step is optional but it is handy for debugging purposes. # We can make a png out of it using dot (part of graphviz) like this:
# We can make a png out of it using dot (part of graphviz) like this: # dot -O -Tpng calc_parse_tree_model.dot
# dot -O -Tpng calc_parse_tree_model.dot PMDOTExporter().exportFile(parser.parser_model, "csv_parse_tree_model.dot")
PMDOTExporter().exportFile(parser.parser_model,
"csv_parse_tree_model.dot") # Creating parse tree out of textual input
parse_tree = parser.parse(test_data)
# Creating parse tree out of textual input
parse_tree = parser.parse(test_data) # Then we export it to a dot file in order to visualise it.
# This is also optional.
# Then we export it to a dot file in order to visualise it. # dot -O -Tpng calc_parse_tree.dot
# This is also optional. PTDOTExporter().exportFile(parse_tree, "csv_parse_tree.dot")
# dot -O -Tpng calc_parse_tree.dot
PTDOTExporter().exportFile(parse_tree,
"csv_parse_tree.dot")
except NoMatch, e:
print "Expected %s at position %s." % (e.value, str(e.parser.pos_to_linecol(e.position)))
...@@ -81,19 +81,16 @@ if __name__ == "__main__": ...@@ -81,19 +81,16 @@ if __name__ == "__main__":
} }
} }
""" """
try: # Creating parser from parser model.
# Creating parser from parser model. parser = ParserPython(jsonFile, debug=True)
parser = ParserPython(jsonFile, debug=True)
# Exporting parser model to dot file in order to visualise it. # Exporting parser model to dot file in order to visualise it.
PMDOTExporter().exportFile(parser.parser_model, PMDOTExporter().exportFile(parser.parser_model, "json_parser_model.dot")
"json_parser_model.dot")
parse_tree = parser.parse(testdata) # Parse json string
parse_tree = parser.parse(testdata)
PTDOTExporter().exportFile(parser.parse_tree, # Export parse tree for visualization
"json_parse_tree.dot") PTDOTExporter().exportFile(parser.parse_tree, "json_parse_tree.dot")
except NoMatch, e:
print "Expected %s at position %s." % (e.value, str(e.parser.pos_to_linecol(e.position)))
...@@ -49,7 +49,7 @@ peg_grammar = r""" ...@@ -49,7 +49,7 @@ peg_grammar = r"""
/ ("(" ordered_choice ")") / literal; / ("(" ordered_choice ")") / literal;
identifier <- r'[a-zA-Z_]([a-zA-Z_]|[0-9])*'; identifier <- r'[a-zA-Z_]([a-zA-Z_]|[0-9])*';
regex <- 'r' '\'' r'(\\\'|[^\'])*' '\''; regex <- 'r\'' r'(\\\'|[^\'])*' '\'';
literal <- r'\'(\\\'|[^\'])*\'|"[^"]*"'; literal <- r'\'(\\\'|[^\'])*\'|"[^"]*"';
LEFT_ARROW <- '<-'; LEFT_ARROW <- '<-';
SLASH <- '/'; SLASH <- '/';
...@@ -65,39 +65,34 @@ peg_grammar = r""" ...@@ -65,39 +65,34 @@ peg_grammar = r"""
""" """
try: # ParserPEG will use ParserPython to parse peg_grammar definition and
# create parser_model for parsing PEG based grammars
parser = ParserPEG(peg_grammar, 'grammar', debug=True)
# ParserPEG will use ParserPython to parse peg_grammar definition and # Exporting parser model to dot file for visualization.
# create parser_model for parsing PEG based grammars PMDOTExporter().exportFile(parser.parser_model,
parser = ParserPEG(peg_grammar, 'grammar', debug=True) "peg_peg_parser_model.dot")
# Exporting parser model to dot file for visualization. # Now we will use created parser to parse the same peg_grammar used for
PMDOTExporter().exportFile(parser.parser_model, # parser initialization. We can parse peg_grammar because it is specified
"peg_peg_parser_model.dot") # using PEG itself.
parser.parse(peg_grammar)
# Now we will use created parser to parse the same peg_grammar used for # Again we export parse tree in dot file for vizualization.
# parser initialization. We can parse peg_grammar because it is specified PTDOTExporter().exportFile(parser.parse_tree,
# using PEG itself. "peg_peg_parse_tree.dot")
parser.parse(peg_grammar)
# Again we export parse tree in dot file for vizualization. # ASG should be the same as parser.parser_model because semantic
PTDOTExporter().exportFile(parser.parse_tree, # actions will create PEG parser (tree of ParsingExpressions).
"peg_peg_parse_tree.dot") asg = parser.getASG(sem_actions)
# ASG should be the same as parser.parser_model because semantic # This graph should be the same as peg_peg_parser_model.dot because
# actions will create PEG parser (tree of ParsingExpressions). # they define the same parser.
asg = parser.getASG(sem_actions) PMDOTExporter().exportFile(asg,
"peg_peg_asg.dot")
# This graph should be the same as peg_peg_parser_model.dot because # If we replace parser_mode with ASG constructed parser it will still
# they define the same parser. # parse PEG grammars
PMDOTExporter().exportFile(asg, parser.parser_model = asg
"peg_peg_asg.dot") parser.parse(peg_grammar)
# If we replace parser_mode with ASG constructed parser it will still
# parse PEG grammars
parser.parser_model = asg
parser.parse(peg_grammar)
except NoMatch, e:
print "Expected %s at position %s." % \
(e.value, str(e.parser.pos_to_linecol(e.position)))
...@@ -33,35 +33,35 @@ def right(): return 'right' ...@@ -33,35 +33,35 @@ def right(): return 'right'
# Semantic actions # Semantic actions
class Up(SemanticAction): class Up(SemanticAction):
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Going up" print "Going up"
return (0, 1) return (0, 1)
class Down(SemanticAction): class Down(SemanticAction):
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Going down" print "Going down"
return (0, -1) return (0, -1)
class Left(SemanticAction): class Left(SemanticAction):
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Going left" print "Going left"
return (-1, 0) return (-1, 0)
class Right(SemanticAction): class Right(SemanticAction):
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Going right" print "Going right"
return (1, 0) return (1, 0)
class Command(SemanticAction): class Command(SemanticAction):
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Command" print "Command"
return nodes[0] return nodes[0]
class Program(SemanticAction): class Program(SemanticAction):
def first_pass(self, parser, node, nodes): def first_pass(self, parser, node, children):
print "Evaluating position" print "Evaluating position"
return reduce(lambda x, y: (x[0]+y[0], x[1]+y[1]), nodes[1:-2]) return reduce(lambda x, y: (x[0]+y[0], x[1]+y[1]), children[1:-2])
# Connecting rules with semantic actions # Connecting rules with semantic actions
program.sem = Program() program.sem = Program()
...@@ -72,44 +72,41 @@ left.sem = Left() ...@@ -72,44 +72,41 @@ left.sem = Left()
right.sem = Right() right.sem = Right()
if __name__ == "__main__": if __name__ == "__main__":
try:
# Program code
# Program code input = '''
input = ''' begin
begin up
up up
up left
left down
down right
right end
end '''
'''
# First we will make a parser - an instance of the robot parser model.
# First we will make a parser - an instance of the robot parser model. # Parser model is given in the form of python constructs therefore we
# Parser model is given in the form of python constructs therefore we # are using ParserPython class.
# are using ParserPython class. parser = ParserPython(program, debug=True)
parser = ParserPython(program, debug=True)
# Then we export it to a dot file in order to visualize it.
# Then we export it to a dot file in order to visualize it. # This step is optional but it is handy for debugging purposes.
# This step is optional but it is handy for debugging purposes. # We can make a png out of it using dot (part of graphviz) like this
# We can make a png out of it using dot (part of graphviz) like this # dot -O -Tpng robot_parser_model.dot
# dot -O -Tpng robot_parser_model.dot PMDOTExporter().exportFile(parser.parser_model,
PMDOTExporter().exportFile(parser.parser_model, "robot_parser_model.dot")
"robot_parser_model.dot")
# We create a parse tree out of textual input
# We create a parse tree out of textual input parse_tree = parser.parse(input)
parse_tree = parser.parse(input)
# Then we export it to a dot file in order to visualize it.
# Then we export it to a dot file in order to visualize it. # dot -O -Tpng robot_parse_tree.dot
# dot -O -Tpng robot_parse_tree.dot PTDOTExporter().exportFile(parse_tree,
PTDOTExporter().exportFile(parse_tree, "robot_parse_tree.dot")
"robot_parse_tree.dot")
# getASG will start semantic analysis.
# getASG will start semantic analysis. # In this case semantic analysis will evaluate expression and
# In this case semantic analysis will evaluate expression and # returned value will be the final position of the robot.
# returned value will be the final position of the robot. print "position = ", parser.getASG()
print "position = ", parser.getASG()
except NoMatch, e:
print "Expected %s at position %s." % (e.value, str(e.parser.pos_to_linecol(e.position)))
...@@ -46,44 +46,41 @@ semantic_actions = { ...@@ -46,44 +46,41 @@ semantic_actions = {
if __name__ == "__main__": if __name__ == "__main__":
try:
# Program code # Program code
input = ''' input = '''
begin begin
up up
up up
left left
down down
right right
end end
''' '''
# First we will make a parser - an instance of the robot parser model. # First we will make a parser - an instance of the robot parser model.
# Parser model is given in the form of PEG specification therefore we # Parser model is given in the form of PEG specification therefore we
# are using ParserPEG class. # are using ParserPEG class.
parser = ParserPEG(robot_grammar, 'program', debug=True) parser = ParserPEG(robot_grammar, 'program', debug=True)
# Then we export it to a dot file in order to visualize it. # Then we export it to a dot file in order to visualize it.
# This step is optional but it is handy for debugging purposes. # This step is optional but it is handy for debugging purposes.
# We can make a png out of it using dot (part of graphviz) like this # We can make a png out of it using dot (part of graphviz) like this
# dot -O -Tpng robot_peg_parser_model.dot # dot -O -Tpng robot_peg_parser_model.dot
PMDOTExporter().exportFile(parser.parser_model, PMDOTExporter().exportFile(parser.parser_model,
"robot_peg_parser_model.dot") "robot_peg_parser_model.dot")
# We create a parse tree out of textual input # We create a parse tree out of textual input
parse_tree = parser.parse(input) parse_tree = parser.parse(input)
# Then we export it to a dot file in order to visualize it. # Then we export it to a dot file in order to visualize it.
# dot -O -Tpng robot_peg_parse_tree.dot # dot -O -Tpng robot_peg_parse_tree.dot
PTDOTExporter().exportFile(parse_tree, PTDOTExporter().exportFile(parse_tree,
"robot_peg_parse_tree.dot") "robot_peg_parse_tree.dot")
# getASG will start semantic analysis. # getASG will start semantic analysis.
# In this case semantic analysis will evaluate expression and # In this case semantic analysis will evaluate expression and
# returned value will be the final position of the robot. # returned value will be the final position of the robot.
print "position = ", parser.getASG(sem_actions=semantic_actions) print "position = ", parser.getASG(sem_actions=semantic_actions)
except NoMatch, e:
print "Expected %s at position %s." % (e.value, str(e.parser.pos_to_linecol(e.position)))
...@@ -13,6 +13,7 @@ from arpeggio import * ...@@ -13,6 +13,7 @@ from arpeggio import *
from arpeggio.export import PMDOTExporter, PTDOTExporter from arpeggio.export import PMDOTExporter, PTDOTExporter
from arpeggio import RegExMatch as _ from arpeggio import RegExMatch as _
# Grammar
def comment(): return [_("//.*"), _("/\*.*\*/")] def comment(): return [_("//.*"), _("/\*.*\*/")]
def literal(): return _(r'\d*\.\d*|\d+|".*?"') def literal(): return _(r'\d*\.\d*|\d+|".*?"')
def symbol(): return _(r"\w+") def symbol(): return _(r"\w+")
...@@ -29,36 +30,31 @@ def functioncall(): return symbol, "(", expressionlist, ")" ...@@ -29,36 +30,31 @@ def functioncall(): return symbol, "(", expressionlist, ")"
def function(): return Kwd("function"), symbol, parameterlist, block def function(): return Kwd("function"), symbol, parameterlist, block
def simpleLanguage(): return function def simpleLanguage(): return function
try:
# Parser instantiation. simpleLanguage is the definition of the root rule # Parser instantiation. simpleLanguage is the definition of the root rule
# and comment is a grammar rule for comments. # and comment is a grammar rule for comments.
parser = ParserPython(simpleLanguage, comment, debug=True) parser = ParserPython(simpleLanguage, comment, debug=True)
# We save parser model to dot file in order to visualise it. # We save parser model to dot file in order to visualise it.
# We can make a png out of it using dot (part of graphviz) like this # We can make a png out of it using dot (part of graphviz) like this
# dot -Tpng -O simple_parser.dot # dot -Tpng -O simple_parser.dot
PMDOTExporter().exportFile(parser.parser_model, PMDOTExporter().exportFile(parser.parser_model, "simple_parser_model.dot")
"simple_parser_model.dot")
# Parser model for comments is handled as separate model # Parser model for comments is handled as separate model
PMDOTExporter().exportFile(parser.comments_model, PMDOTExporter().exportFile(parser.comments_model, "simple_parser_comments.dot")
"simple_parser_comments.dot")
input = """ input = """
function fak(n) { function fak(n) {
if (n==0) { if (n==0) {
// For 0! result is 0 // For 0! result is 0
return 0; return 0;
} else { /* And for n>0 result is calculated recursively */ } else { /* And for n>0 result is calculated recursively */
return n * fak(n - 1); return n * fak(n - 1);
}; };
} }
""" """
parse_tree = parser.parse(input) parse_tree = parser.parse(input)
PTDOTExporter().exportFile(parse_tree, # Export parse tree for visualization
"simple_parse_tree.dot") PTDOTExporter().exportFile(parse_tree, "simple_parse_tree.dot")
except NoMatch, e:
print "Expected %s at position %s." % (e.value, str(e.parser.pos_to_linecol(e.position)))
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment