1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 20 10:48:32 2017
export short video data according to 融合传播指数-短视频账号列表.csv
Nov 13 2017
Xin Yue found that, there are some videos missed by the value of 'video_number_of_the_day'.
For example, TV column '深视新闻' has released some videos on Sep 22 2017 on platform 央视新闻+,
but they are absent in data file '短视频明细_2017-09-23.csv', while present in
data file '短视频明细_2017-09-24.csv', and the fetch_time are around Sep 24 2017.
That means, they are missed when our date provider crawl the platform on Sep 23,
while catched on Sep 24. (If they are still missed on Sep 24 and forever, we won't
be able to discover this issue by only checking the data.)
To solve this, the exporting program will search the database rather than only
summarize the detailed output file. A field 'video_number_of_the_day_global' will
be added on the summarizing file to hold the searched values.
@author: hanye
"""
#from esCCR import EsUtils
import datetime, time
import pandas as pd
from elasticsearch.helpers import scan
import elasticsearch
import sys
import copy
import func_scp_py
from scp import SCPException
import logging, importlib
todayT=datetime.datetime.now()
#yesterdayT=todayT-datetime.timedelta(days=1)
one_d_bfr_yesterdayT=todayT-datetime.timedelta(days=2)
two_d_bfr_yesterdayT=todayT-datetime.timedelta(days=3)
# define logger
logger=logging.getLogger('short_video_for_CCI')
logger.setLevel(logging.INFO)
# create handler
path='/home/hanye/project_data/Python/Projects/CCI/log/'
log_fn='export_CCI_short_video_data_on_%s_log' % (datetime.datetime.now().isoformat().replace(':','-')[:23])
fh=logging.FileHandler(path+log_fn)
fh.setLevel(logging.INFO)
# create formatter and add it to the handler
formatter=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
# add handler to logger
logger.addHandler(fh)
logger.info('************ log starts')
hosts='192.168.17.11'
port=9200
user='elastic'
passwd='hy_csm_16'
http_auth=(user, passwd)
es=elasticsearch.Elasticsearch(hosts=hosts, port=port, http_auth=http_auth)
index='short-video-production'
doc_type_daily_url='daily-url'
doc_type_all_time_url='all-time-url'
# 1 build {platform:releaser} dict of interest
resource_path = '/home/hanye/project_data/Python/Projects/CCI/resource/'
releaser_mapping_filename = '融合传播指数-短视频账号列表.csv'
TV_column_dict = {}
TV_column_Lst=[]
f_releaser_mapping = open(resource_path+releaser_mapping_filename, 'r', encoding='gb18030')
header = f_releaser_mapping.readline().strip().split(',')
for line in f_releaser_mapping:
line_Lst = line.strip().split(',')
line_dict = dict(zip(header, line_Lst))
TV_column_Lst.append(line_dict)
f_releaser_mapping.close()
for line in TV_column_Lst:
TV_column_name=line['栏目']
for plt in line:
if plt not in ['序号', '栏目']:
if line[plt]!='':
if TV_column_name not in TV_column_dict:
TV_column_dict[TV_column_name]={plt: [line[plt]]}
elif plt not in TV_column_dict[TV_column_name]:
TV_column_dict[TV_column_name][plt]=[line[plt]]
else:
TV_column_dict[TV_column_name][plt].append(line[plt])
platform_releaser_dict = {}
for column in TV_column_dict:
for platform in TV_column_dict[column]:
if platform not in platform_releaser_dict:
platform_releaser_dict.update({platform: copy.deepcopy(TV_column_dict[column][platform])})
else:
releaser_Lst = platform_releaser_dict[platform]
releaser_Lst += TV_column_dict[column][platform]
releaser_Lst = list(set(releaser_Lst))
if '' in releaser_Lst:
releaser_Lst.remove('')
platform_releaser_dict[platform] = releaser_Lst
releaser_TV_column_dict = {}
for TV_column in TV_column_dict:
for platform in TV_column_dict[TV_column]:
for releaser in TV_column_dict[TV_column][platform]:
if releaser not in releaser_TV_column_dict:
releaser_TV_column_dict.update({releaser: TV_column})
else:
logger.info('duplicated releaser name: %s' % releaser)
# 2 export short video data from ccr es according to {platform:releaser} dict
def export_short_video_data(dayT):
search_body={
"query": {
"bool": {
"filter": [
{"range": {"release_time": {"gte":0, "lte":0}}},
{"range": {"fetch_time": {"gte":0, "lte":0}}},
{"term": {"platform.keyword": None}},
{"term": {"releaser.keyword": None}}
],
}
}
}
survey_date_T=datetime.datetime(dayT.year, dayT.month, dayT.day)
survey_date=survey_date_T.isoformat()[:10]
release_time_start_T = survey_date_T - datetime.timedelta(days=15)
release_time_start_iso = release_time_start_T.isoformat()
release_time_end_iso = survey_date_T.isoformat()
fetch_time_start_T = survey_date_T + datetime.timedelta(seconds=0)
fetch_time_start_iso = fetch_time_start_T.isoformat()
fetch_time_end_T = survey_date_T + datetime.timedelta(seconds=24*3600-1)
fetch_time_end_iso = fetch_time_end_T.isoformat()
release_time_start_ts=int(datetime.datetime
.strptime(release_time_start_iso, '%Y-%m-%dT%H:%M:%S')
.timestamp()*1000)
release_time_end_ts=int(datetime.datetime
.strptime(release_time_end_iso, '%Y-%m-%dT%H:%M:%S')
.timestamp()*1000)
fetch_time_start_ts=int(datetime.datetime
.strptime(fetch_time_start_iso, '%Y-%m-%dT%H:%M:%S')
.timestamp()*1000)
fetch_time_end_ts=int(datetime.datetime
.strptime(fetch_time_end_iso, '%Y-%m-%dT%H:%M:%S')
.timestamp()*1000)
search_body['query']['bool']['filter'][0]['range']['release_time']['gte']=release_time_start_ts
search_body['query']['bool']['filter'][0]['range']['release_time']['lte']=release_time_end_ts
search_body['query']['bool']['filter'][1]['range']['fetch_time']['gte']=fetch_time_start_ts
search_body['query']['bool']['filter'][1]['range']['fetch_time']['lte']=fetch_time_end_ts
data_raw_collector = []
for platform in platform_releaser_dict:
search_body['query']['bool']['filter'][2]['term']['platform.keyword']=platform
logger.info('platform %s' % platform)
for releaser in platform_releaser_dict[platform]:
logger.info('platform %s, releaser %s' % (platform, releaser))
search_body['query']['bool']['filter'][3]['term']['releaser.keyword']=releaser
search_re=es.search(index=index,
doc_type=doc_type_daily_url,
body=search_body,
size=10,
request_timeout=100)
total_hits=search_re['hits']['total']
logger.info('platform %s, releaser %s total hits: %d' % (platform, releaser, total_hits))
scan_re=scan(client=es,
index=index,
doc_type=doc_type_daily_url,
query=search_body,
size=1000,scroll='5m',
request_timeout=100)
line_counter=0
for line in scan_re:
line_dict=line
data_raw_collector.append(line_dict)
line_counter+=1
if line_counter%1000==0 or line_counter==total_hits:
logger.info('processing line %d/%d' % (line_counter, total_hits))
columns = ['url', 'data_provider', 'platform', 'duration', 'title',
'release_time_H', 'releaser', 'TV_column',
'net_inc_play_count','net_inc_play_count_wiped_flag','net_inc_play_count_original',
'net_inc_comment_count','net_inc_comment_count_wiped_flag','net_inc_comment_count_original',
'net_inc_favorite_count','net_inc_favorite_count_wiped_flag','net_inc_favorite_count_original',
'play_count', 'comment_count', 'favorite_count',
'fetch_time_H']
data_Lst= []
for line in data_raw_collector:
line_dict=line['_source']
data_dict = {}
for col in columns:
if col not in line_dict:
line_dict.update({col: ''})
if col not in ['TV_column', 'release_time_H', 'fetch_time_H']:
data_dict.update({col: line_dict[col]})
release_time_ts = line_dict['release_time']/1e3
fetch_time_ts = line_dict['fetch_time']/1e3
release_time_H = datetime.datetime.fromtimestamp(release_time_ts).isoformat()
fetch_time_H = datetime.datetime.fromtimestamp(fetch_time_ts).isoformat()
releaser = line_dict['releaser']
TV_column = releaser_TV_column_dict[releaser]
data_dict.update({'release_time_H': release_time_H,
'fetch_time_H': fetch_time_H,
'TV_column': TV_column})
# negative daily net_inc values will be wiped to zero, leaving a modify flag
# added on Oct 17 2017
net_inc_play_count=data_dict['net_inc_play_count']
if net_inc_play_count!='' and int(net_inc_play_count)<0:
net_inc_play_count_wiped_flag=True
net_inc_play_count_original=net_inc_play_count
net_inc_play_count=0
data_dict.update({'net_inc_play_count': net_inc_play_count,
'net_inc_play_count_wiped_flag': net_inc_play_count_wiped_flag,
'net_inc_play_count_original': net_inc_play_count_original, })
net_inc_comment_count=data_dict['net_inc_comment_count']
if net_inc_comment_count!='' and int(net_inc_comment_count)<0:
net_inc_comment_count_wiped_flag=True
net_inc_comment_count_original=net_inc_comment_count
net_inc_comment_count=0
data_dict.update({
'net_inc_comment_count': net_inc_comment_count,
'net_inc_comment_count_wiped_flag': net_inc_comment_count_wiped_flag,
'net_inc_comment_count_original': net_inc_comment_count_original, })
net_inc_favorite_count=data_dict['net_inc_favorite_count']
if net_inc_favorite_count!='' and int(net_inc_favorite_count)<0:
net_inc_favorite_count_wiped_flag=True
net_inc_favorite_count_original=net_inc_favorite_count
net_inc_favorite_count=0
data_dict.update({
'net_inc_favorite_count': net_inc_favorite_count,
'net_inc_favorite_count_wiped_flag': net_inc_favorite_count_wiped_flag,
'net_inc_favorite_count_original': net_inc_favorite_count_original,
})
data_Lst.append(data_dict)
data_path='/home/hanye/project_data/Python/Projects/CCI/data/'
data_df = pd.DataFrame(data=data_Lst, columns=columns)
csv_fn_details=data_path+'短视频明细'+survey_date.replace('-','')+'.csv'
data_df.to_csv(csv_fn_details,
index=False, encoding='gb18030',)
TV_column_summary_dict = {}
release_date_according_to_survey_date = (survey_date_T-datetime.timedelta(days=1)).isoformat()[:10]
for TV_column in TV_column_dict:
TV_column_summary_dict.update({TV_column: {
'video_number_of_the_day': 0,
# add a global value of video number for a releaser
# Nov 13 2017
'video_number_of_the_day_global': 0,
'play_count_of_recent_15_days': 0,
'comment_count_of_recent_15_days': 0,
'favorite_count_of_recent_15_days': 0,
}})
for line in data_Lst:
if line['net_inc_play_count']=='':
line['net_inc_play_count']=0
if line['net_inc_comment_count']=='':
line['net_inc_comment_count']=0
if line['net_inc_favorite_count']=='':
line['net_inc_favorite_count']=0
TV_column_summary_dict[line['TV_column']]['play_count_of_recent_15_days'] += int(line['net_inc_play_count'])
TV_column_summary_dict[line['TV_column']]['comment_count_of_recent_15_days'] += int(line['net_inc_comment_count'])
TV_column_summary_dict[line['TV_column']]['favorite_count_of_recent_15_days'] += int(line['net_inc_favorite_count'])
release_time_H = line['release_time_H']
release_time_day_str = release_time_H[:10]
if release_time_day_str==release_date_according_to_survey_date:
TV_column_summary_dict[line['TV_column']]['video_number_of_the_day'] += 1
# search global video_num for a TV column
# Nov 13 2017
release_date_according_to_survey_date_T=survey_date_T-datetime.timedelta(days=1)
target_release_time_ts_start=int(release_date_according_to_survey_date_T.timestamp()*1e3)
target_release_time_ts_end=int(survey_date_T.timestamp()*1e3-1)
for TV_col in TV_column_summary_dict:
for platform_target in TV_column_dict[TV_col]:
releaser_target_Lst=TV_column_dict[TV_col][platform_target]
for releaser_target in releaser_target_Lst:
if releaser_target!='':
search_for_video_num_globally_body={
"query": {
"bool": {
"filter": [
{"range": {"release_time": {"gte":target_release_time_ts_start,
"lte":target_release_time_ts_end}}},
{"term": {"platform.keyword": platform_target}},
{"term": {"releaser.keyword": releaser_target}}
]
}
},
"size": 0
}
search_for_video_num_globally_resp=es.search(index=index,
doc_type=doc_type_all_time_url,
body=search_for_video_num_globally_body,
request_timeout=100)
global_search_hit=search_for_video_num_globally_resp['hits']['total']
TV_column_summary_dict[TV_col]['video_number_of_the_day_global']+=global_search_hit
columns_summary = ['TV_column',
# add a global value of video number for a releaser
# Nov 13 2017
'video_number_of_the_day_global',
'play_count_of_recent_15_days',
'comment_count_of_recent_15_days',
'favorite_count_of_recent_15_days',
'video_number_of_the_day']
TV_column_summary_Lst = []
for TV_column in TV_column_summary_dict:
line_dict = TV_column_summary_dict[TV_column]
line_dict.update({'TV_column': TV_column})
TV_column_summary_Lst.append(line_dict)
TV_column_summary_df = pd.DataFrame(data=TV_column_summary_Lst, columns=columns_summary)
csv_fn_summary=data_path+'短视频汇总'+survey_date.replace('-', '')+'.csv'
TV_column_summary_df.to_csv(csv_fn_summary,
index=False, encoding='gb18030')
return (csv_fn_summary, csv_fn_details)
logger.info('****** exporting data for %s ******' % one_d_bfr_yesterdayT)
ystd_summary, ystd_detail = export_short_video_data(one_d_bfr_yesterdayT)
logger.info('exporting data for %s done' % one_d_bfr_yesterdayT)
logger.info('****** exporting data for %s ******' % two_d_bfr_yesterdayT)
d_bfr_ystd_summary, d_bfr_ystd_detail = export_short_video_data(two_d_bfr_yesterdayT)
logger.info('exporting data for %s done' % two_d_bfr_yesterdayT)
# 3 scp exported csv files onto FTP server
local_data_path='/home/hanye/project_data/Python/Projects/CCI/data'
remote_full_path='/boot/opt/ccr/CCI/daily_export'
scp_sucessed_flag=False
scp_start_T=datetime.datetime.now()
while not scp_sucessed_flag:
# if wait for more than 24 hours, program will exit
if (datetime.datetime.now()-scp_start_T).total_seconds()>24*3600:
logger.info('Have waited for more than 24 hours, program will exit.')
sys.exit(0)
try:
logger.info('****** start scp from local %s to ftp server %s' % (local_data_path, remote_full_path))
t_s = datetime.datetime.now()
func_scp_py.scp_to_ftp_server(ystd_summary, remote_full_path)
logger.info('scp %s done.' % ystd_summary)
func_scp_py.scp_to_ftp_server(ystd_detail, remote_full_path)
logger.info('scp %s done.' % ystd_detail)
func_scp_py.scp_to_ftp_server(d_bfr_ystd_summary, remote_full_path)
logger.info('scp %s done.' % d_bfr_ystd_summary)
func_scp_py.scp_to_ftp_server(d_bfr_ystd_detail, remote_full_path)
logger.info('scp %s done.' % d_bfr_ystd_detail)
except SCPException:
logger.info('catched SCPException, no file copyed, will try again.')
importlib.reload(func_scp_py) # reload is necessary for scp retry
time.sleep(300)
else:
scp_sucessed_flag=True
t_e = datetime.datetime.now()
t_delta = t_e - t_s
logger.info('scp done, time spent %s' % t_delta)
logger.info('All done.')