1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
import sys
import os
from datetime import date, timedelta
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
import redis
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import pyspark.sql as sql
from pyspark.sql.functions import when
from pyspark.sql.types import *
from pyspark.sql import functions as F
from collections import defaultdict
import json
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
import utils.configUtils as configUtils
# import utils.connUtils as connUtils
import pandas as pd
import math
# os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"
"""
特征工程
"""
NUMBER_PRECISION = 2
VERSION = configUtils.SERVICE_VERSION
FEATURE_USER_KEY = "Strategy:rec:feature:service:" + VERSION + ":user:"
FEATURE_ITEM_KEY = "Strategy:rec:feature:service:" + VERSION + ":item:"
FEATURE_VOCAB_KEY = "Strategy:rec:vocab:service:" + VERSION
FEATURE_COLUMN_KEY = "Strategy:rec:column:service:" + VERSION
ITEM_PREFIX = "item_"
DATA_PATH_TRAIN = "/data/files/service_feature_{}_train.csv".format(VERSION)
def getRedisConn():
pool = redis.ConnectionPool(host="172.16.50.145", password="XfkMCCdWDIU%ls$h", port=6379, db=0)
conn = redis.Redis(connection_pool=pool)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test
return conn
def parseTags(tags, i):
tags_arr = tags.split(",")
if len(tags_arr) >= i:
return tags_arr[i - 1]
else:
return "-1"
def numberToBucket(num):
res = 0
if not num:
return str(res)
if num >= 1000:
res = 1000 // 10
else:
res = int(num) // 10
return str(res)
def priceToBucket(num):
res = 0
if not num:
return str(res)
if num >= 100000:
res = 100000 // 1000
else:
res = int(num) // 1000
return str(res)
numberToBucketUdf = F.udf(numberToBucket, StringType())
priceToBucketUdf = F.udf(priceToBucket, StringType())
def addItemStaticFeatures(samples, itemDF, dataVocab):
ctrUdf = F.udf(wilson_ctr, FloatType())
# item不设置over窗口,原因:item可能一直存在,统计数据按照最新即可
print("item统计特征处理...")
staticFeatures = samples.groupBy('item_id').agg(F.count(F.lit(1)).alias('itemRatingCount'),
F.avg(F.col('rating')).alias('itemRatingAvg'),
F.stddev(F.col('rating')).alias('itemRatingStddev'),
F.sum(
when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).alias(
"itemClickCount"),
F.sum(
when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).alias(
"itemExpCount")
).fillna(0) \
.withColumn('itemRatingStddev', F.format_number(F.col('itemRatingStddev'), NUMBER_PRECISION).cast("float")) \
.withColumn('itemRatingAvg', F.format_number(F.col('itemRatingAvg'), NUMBER_PRECISION).cast("float")) \
.withColumn('itemCtr',
F.format_number(ctrUdf(F.col("itemClickCount"), (F.col("itemExpCount"))), NUMBER_PRECISION).cast(
"float"))
staticFeatures.show(20, truncate=False)
staticFeatures = itemDF.join(staticFeatures, on=["item_id"], how='left')
# 连续特征分桶
bucket_vocab = [str(i) for i in range(101)]
bucket_suffix = "_Bucket"
for col in ["itemRatingCount", "itemRatingAvg", "itemClickCount", "itemExpCount"]:
new_col = col + bucket_suffix
staticFeatures = staticFeatures.withColumn(new_col, numberToBucketUdf(F.col(col))) \
.drop(col) \
.withColumn(new_col, F.when(F.col(new_col).isNull(), "0").otherwise(F.col(new_col)))
dataVocab[new_col] = bucket_vocab
# 方差处理
number_suffix = "_number"
for col in ["itemRatingStddev"]:
new_col = col + number_suffix
staticFeatures = staticFeatures.withColumn(new_col,
F.when(F.col(col).isNull(), 0).otherwise(1 / (F.col(col) + 1))).drop(
col)
for col in ["itemCtr"]:
new_col = col + number_suffix
staticFeatures = staticFeatures.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(
F.col(col))).withColumnRenamed(col, new_col)
print("item size:", staticFeatures.count())
staticFeatures.show(5, truncate=False)
return staticFeatures
def addUserStaticsFeatures(samples, dataVocab):
print("user统计特征处理...")
samples = samples \
.withColumn('userRatingCount', F.format_number(
F.sum(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),
NUMBER_PRECISION).cast("float")) \
.withColumn("userRatingAvg", F.format_number(
F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),
NUMBER_PRECISION).cast("float")) \
.withColumn("userRatingStddev", F.format_number(
F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),
NUMBER_PRECISION).cast("float")) \
.withColumn("userClickCount", F.format_number(
F.sum(when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).over(
sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast(
"float")) \
.withColumn("userExpCount", F.format_number(F.sum(when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).over(
sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast(
"float")) \
.withColumn("userCtr",
F.format_number(F.col("userClickCount") / (F.col("userExpCount") + 1), NUMBER_PRECISION).cast(
"float")) \
.filter(F.col("userRatingCount") > 1)
samples.show(20, truncate=False)
# 连续特征分桶
bucket_vocab = [str(i) for i in range(101)]
bucket_suffix = "_Bucket"
for col in ["userRatingCount", "userRatingAvg", "userClickCount", "userExpCount"]:
new_col = col + bucket_suffix
samples = samples.withColumn(new_col, numberToBucketUdf(F.col(col))) \
.drop(col) \
.withColumn(new_col, F.when(F.col(new_col).isNull(), "0").otherwise(F.col(new_col)))
dataVocab[new_col] = bucket_vocab
# 方差处理
number_suffix = "_number"
for col in ["userRatingStddev"]:
new_col = col + number_suffix
samples = samples.withColumn(new_col, F.when(F.col(col).isNull(), 0).otherwise(1 / (F.col(col) + 1))).drop(col)
for col in ["userCtr"]:
new_col = col + number_suffix
samples = samples.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(F.col(col))).withColumnRenamed(col,
new_col)
samples.printSchema()
samples.show(20, truncate=False)
return samples
def addItemFeatures(itemDF, dataVocab, multi_col_vocab):
# multi_col = ['sku_tags', 'sku_show_tags','second_demands', 'second_solutions', 'second_positions']
multi_col = ['tags_v3', 'second_demands', 'second_solutions', 'second_positions']
onehot_col = ['id', 'service_type', 'merchant_id', 'doctor_type', 'doctor_id', 'doctor_famous', 'hospital_id',
'hospital_city_tag_id', 'hospital_type', 'hospital_is_high_quality']
for col in onehot_col:
new_c = ITEM_PREFIX + col
dataVocab[new_c] = list(set(itemDF[col].tolist()))
itemDF[new_c] = itemDF[col]
itemDF = itemDF.drop(columns=onehot_col)
for c in multi_col:
multi_col_vocab[c] = list(set(itemDF[c].tolist()))
for i in range(1, 6):
new_c = ITEM_PREFIX + c + "__" + str(i)
itemDF[new_c] = itemDF[c].map(lambda x: parseTags(x, i))
dataVocab[new_c] = multi_col_vocab[c]
# 连续特征分桶
bucket_vocab = [str(i) for i in range(101)]
bucket_suffix = "_Bucket"
for col in ['case_count', 'sales_count']:
new_col = ITEM_PREFIX + col + bucket_suffix
itemDF[new_col] = itemDF[col].map(numberToBucket)
itemDF = itemDF.drop(columns=[col])
dataVocab[new_col] = bucket_vocab
for col in ['sku_price']:
new_col = ITEM_PREFIX + col + bucket_suffix
itemDF[new_col] = itemDF[col].map(priceToBucket)
itemDF = itemDF.drop(columns=[col])
dataVocab[new_col] = bucket_vocab
# 连续数据处理
number_suffix = "_number"
for col in ["discount"]:
new_col = ITEM_PREFIX + col + number_suffix
itemDF[new_col] = itemDF[col]
itemDF = itemDF.drop(columns=[col])
return itemDF
def extractTags(genres_list):
# 根据点击列表顺序加权
genres_dict = defaultdict(int)
for i, genres in enumerate(genres_list):
for genre in genres.split(','):
genres_dict[genre] += i
sortedGenres = sorted(genres_dict.items(), key=lambda x: x[1], reverse=True)
return [x[0] for x in sortedGenres]
# sql版本不支持F.reverse
def arrayReverse(arr):
arr.reverse()
return arr
"""
p —— 概率,即点击的概率,也就是 CTR
n —— 样本总数,即曝光数
z —— 在正态分布里,均值 + z * 标准差会有一定的置信度。例如 z 取 1.96,就有 95% 的置信度。
Wilson区间的含义就是,就是指在一定置信度下,真实的 CTR 范围是多少
"""
def wilson_ctr(num_pv, num_click):
num_pv = float(num_pv)
num_click = float(num_click)
if num_pv * num_click == 0 or num_pv < num_click:
return 0.0
z = 1.96;
n = num_pv;
p = num_click / num_pv;
score = (p + z * z / (2 * n) - z * math.sqrt((p * (1.0 - p) + z * z / (4.0 * n)) / n)) / (1.0 + z * z / n);
return float(score);
def addUserFeatures(samples, dataVocab, multiVocab):
dataVocab["userid"] = collectColumnToVocab(samples, "userid")
dataVocab["user_city_id"] = collectColumnToVocab(samples, "user_city_id")
dataVocab["user_os"] = ["ios", "android"]
extractTagsUdf = F.udf(extractTags, ArrayType(StringType()))
arrayReverseUdf = F.udf(arrayReverse, ArrayType(StringType()))
ctrUdf = F.udf(wilson_ctr, FloatType())
print("user历史数据处理...")
# user历史记录
samples = samples.withColumn('userPositiveHistory', F.collect_list(
when(F.col('label') == 1, F.col('item_id')).otherwise(F.lit(None))).over(
sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)))
samples = samples.withColumn("userPositiveHistory", arrayReverseUdf(F.col("userPositiveHistory")))
for i in range(1, 11):
samples = samples.withColumn("userRatedHistory" + str(i),
F.when(F.col("userPositiveHistory")[i - 1].isNotNull(),
F.col("userPositiveHistory")[i - 1]).otherwise("-1"))
dataVocab["userRatedHistory" + str(i)] = dataVocab["item_id"]
samples = samples.drop("userPositiveHistory")
# user偏好
print("user 偏好数据")
for c, v in multiVocab.items():
new_col = "user" + "__" + c
samples = samples.withColumn(new_col, extractTagsUdf(
F.collect_list(when(F.col('label') == 1, F.col(c)).otherwise(F.lit(None))).over(
sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1))))
for i in range(1, 6):
samples = samples.withColumn(new_col + "__" + str(i),
F.when(F.col(new_col)[i - 1].isNotNull(), F.col(new_col)[i - 1]).otherwise(
"-1"))
dataVocab[new_col + "__" + str(i)] = v
samples = samples.drop(new_col).drop(c)
print("user统计特征处理...")
samples = samples \
.withColumn('userRatingCount', F.format_number(
F.sum(F.lit(1)).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),
NUMBER_PRECISION).cast("float")) \
.withColumn("userRatingAvg", F.format_number(
F.avg(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),
NUMBER_PRECISION).cast("float")) \
.withColumn("userRatingStddev", F.format_number(
F.stddev(F.col("rating")).over(sql.Window.partitionBy('userid').orderBy('timestamp').rowsBetween(-100, -1)),
NUMBER_PRECISION).cast("float")) \
.withColumn("userClickCount", F.format_number(
F.sum(when(F.col('label') == 1, F.lit(1)).otherwise(F.lit(0))).over(
sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast(
"float")) \
.withColumn("userExpCount", F.format_number(F.sum(when(F.col('label') == 0, F.lit(1)).otherwise(F.lit(0))).over(
sql.Window.partitionBy("userid").orderBy(F.col("timestamp")).rowsBetween(-100, -1)), NUMBER_PRECISION).cast(
"float")) \
.withColumn("userCtr",
F.format_number(ctrUdf(F.col("userClickCount"), F.col("userExpCount")), NUMBER_PRECISION)) \
.filter(F.col("userRatingCount") > 1)
samples.show(10, truncate=False)
# 连续特征分桶
bucket_vocab = [str(i) for i in range(101)]
bucket_suffix = "_Bucket"
for col in ["userRatingCount", "userRatingAvg", "userClickCount", "userExpCount"]:
new_col = col + bucket_suffix
samples = samples.withColumn(new_col, numberToBucketUdf(F.col(col))) \
.drop(col) \
.withColumn(new_col, F.when(F.col(new_col).isNull(), "0").otherwise(F.col(new_col)))
dataVocab[new_col] = bucket_vocab
# 方差处理
number_suffix = "_number"
for col in ["userRatingStddev"]:
new_col = col + number_suffix
samples = samples.withColumn(new_col, F.when(F.col(col).isNull(), 0).otherwise(1 / (F.col(col) + 1))).drop(col)
for col in ["userCtr"]:
new_col = col + number_suffix
samples = samples.withColumn(col, F.when(F.col(col).isNull(), 0).otherwise(F.col(col))).withColumnRenamed(col,
new_col)
samples.printSchema()
samples.show(10, truncate=False)
return samples
def addSampleLabel(ratingSamples):
ratingSamples = ratingSamples.withColumn('label', when(F.col('rating') >= 1, 1).otherwise(0))
# ratingSamples = ratingSamples.withColumn('label', when(F.col('rating') >= 5, 1).otherwise(0))
ratingSamples.show(5, truncate=False)
ratingSamples.printSchema()
return ratingSamples
def samplesNegAndUnion(samplesPos, samplesNeg):
# 正负样本 1:4
pos_count = samplesPos.count()
neg_count = samplesNeg.count()
print("before filter posSize:{},negSize:{}".format(str(pos_count), str(neg_count)))
samplesNeg = samplesNeg.sample(pos_count * 4 / neg_count)
samples = samplesNeg.union(samplesPos)
dataSize = samples.count()
print("dataSize:{}".format(str(dataSize)))
return samples
def splitAndSaveTrainingTestSamplesByTimeStamp(samples, splitTimestamp, file_path):
samples = samples.withColumn("timestampLong", F.col("timestamp").cast(LongType()))
# quantile = smallSamples.stat.approxQuantile("timestampLong", [0.8], 0.05)
# splitTimestamp = quantile[0]
train = samples.where(F.col("timestampLong") <= splitTimestamp).drop("timestampLong")
test = samples.where(F.col("timestampLong") > splitTimestamp).drop("timestampLong")
print("split train size:{},test size:{}".format(str(train.count()), str(test.count())))
trainingSavePath = file_path + '_train'
testSavePath = file_path + '_test'
train.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(trainingSavePath)
test.write.option("header", "true").option("delimiter", "|").mode('overwrite').csv(testSavePath)
def collectColumnToVocab(samples, column):
datas = samples.select(column).distinct().collect()
vocabSet = set()
for d in datas:
if d[column]:
vocabSet.add(str(d[column]))
return list(vocabSet)
def collectMutiColumnToVocab(samples, column):
datas = samples.select(column).distinct().collect()
tagSet = set()
for d in datas:
if d[column]:
for tag in d[column].split(","):
tagSet.add(tag)
tagSet.add("-1") # 空值默认
return list(tagSet)
def dataVocabToRedis(dataVocab):
conn = getRedisConn()
conn.set(FEATURE_VOCAB_KEY, dataVocab)
conn.expire(FEATURE_VOCAB_KEY, 60 * 60 * 24 * 7)
def featureColumnsToRedis(columns):
conn = getRedisConn()
conn.set(FEATURE_COLUMN_KEY, json.dumps(columns))
conn.expire(FEATURE_COLUMN_KEY, 60 * 60 * 24 * 7)
def featureToRedis(key, datas):
conn = getRedisConn()
for k, v in datas.items():
newKey = key + k
conn.set(newKey, v)
conn.expire(newKey, 60 * 60 * 24 * 7)
def userFeaturesToRedis(samples, columns, prefix, redisKey):
idCol = prefix + "id"
timestampCol = idCol + "_timestamp"
def toRedis(datas):
conn = getRedisConn()
for d in datas:
k = d[idCol]
v = json.dumps(d.asDict(), ensure_ascii=False)
newKey = redisKey + k
conn.set(newKey, v)
conn.expire(newKey, 60 * 60 * 24 * 7)
# 根据timestamp获取每个user最新的记录
prefixSamples = samples.groupBy(idCol).agg(F.max("timestamp").alias(timestampCol))
resDatas = prefixSamples.join(samples, on=[idCol], how='inner').where(F.col("timestamp") == F.col(timestampCol))
resDatas = resDatas.select(*columns).distinct()
resDatas.show(10, truncate=False)
print(prefix, resDatas.count())
resDatas.repartition(8).foreachPartition(toRedis)
def itemFeaturesToRedis(itemStaticDF, redisKey):
idCol = "item_id"
def toRedis(datas):
conn = getRedisConn()
for d in datas:
k = d[idCol]
v = json.dumps(d.asDict(), ensure_ascii=False)
newKey = redisKey + k
conn.set(newKey, v)
conn.expire(newKey, 60 * 60 * 24 * 7)
itemStaticDF.repartition(8).foreachPartition(toRedis)
"""
数据加载
"""
CONTENT_TYPE = "service"
SERVICE_HOSTS = [
{'host': "172.16.52.33", 'port': 9200},
{'host': "172.16.52.19", 'port': 9200},
{'host': "172.16.52.48", 'port': 9200},
{'host': "172.16.52.27", 'port': 9200},
{'host': "172.16.52.34", 'port': 9200}
]
ES_INDEX = "gm-dbmw-service-read"
ES_INDEX_TEST = "gm_test-service-read"
ACTION_REG = r"""^\\d+$"""
def getEsConn_test():
host_config = [{'host': '172.18.52.14', 'port': 9200}, {'host': '172.18.52.133', 'port': 9200},
{'host': '172.18.52.7', 'port': 9200}]
return Elasticsearch(host_config, http_auth=('elastic', 'gm_test'), timeout=3600)
def getEsConn():
return Elasticsearch(SERVICE_HOSTS, http_auth=('elastic', 'gengmei!@#'), timeout=3600)
def getClickSql(start, end):
sql = """
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.card_id,t1.time_stamp,t1.page_stay,t1.cl_type as os,t1.city_id as user_city_id
FROM
(
select partition_date,city_id,cl_id,business_id as card_id,time_stamp,page_stay,cl_type
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date>='{startDay}' and partition_date<='{endDay}'
AND page_name='welfare_detail'
-- AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
group by partition_date,city_id,cl_id,business_id,time_stamp,page_stay,cl_type
) AS t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion\_jf\_%'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
""".format(startDay=start, endDay=end)
print(sql)
return sql
def getExposureSql(start, end):
sql = """
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay,cl_type as os,t1.city_id as user_city_id
from
( --新首页卡片曝光
SELECT partition_date,city_id,cl_type,cl_id,card_id,max(time_stamp) as time_stamp
FROM online.ml_community_precise_exposure_detail
where partition_date>='{startDay}' and partition_date<='{endDay}'
and action in ('page_precise_exposure','home_choiceness_card_exposure')
and cl_id IS NOT NULL
and card_id IS NOT NULL
and is_exposure='1'
--and page_name='home'
--and tab_name='精选'
--and page_name in ('home','search_result_more')
and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品'))
and card_type in ('card','video')
and card_content_type in ('service')
and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill')
group by partition_date,city_id,cl_type,cl_id,card_id,app_session_id
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion\_jf\_%'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
""".format(startDay=start, endDay=end)
print(sql)
return sql
def getClickSql2(start, end):
sql = """
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay
FROM
(select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date BETWEEN '{}' AND '{}'
AND page_name='welfare_detail'
AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
AND business_id rlike '{}'
) AS t1
JOIN
(select partition_date,active_type,first_channel_source_type,device_id
from online.ml_device_day_active_status
where partition_date BETWEEN '{}' AND '{}'
AND active_type IN ('1', '2', '4')
AND first_channel_source_type not IN ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
AND first_channel_source_type not LIKE 'promotion\\_jf\\_%') as t2
ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
(
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY = regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)dev
on t1.cl_id=dev.device_id
WHERE dev.device_id is null
""".format(start, end, ACTION_REG, start, end)
print(sql)
return sql
def getExposureSql2(start, end):
sql = """
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay
FROM
(SELECT partition_date,cl_id,card_id,time_stamp
FROM online.ml_community_precise_exposure_detail
WHERE cl_id IS NOT NULL
AND card_id IS NOT NULL
AND card_id rlike '{}'
AND action='page_precise_exposure'
AND card_content_type = '{}'
AND is_exposure = 1 ) AS t1
LEFT JOIN online.ml_device_day_active_status AS t2 ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
( SELECT DISTINCT device_id
FROM ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
WHERE PARTITION_DAY = regexp_replace(DATE_SUB(CURRENT_DATE,1),'-','')
AND is_abnormal_device = 'true' )dev
ON t1.cl_id=dev.device_id
WHERE dev.device_id IS NULL
AND t2.partition_date BETWEEN '{}' AND '{}'
AND t2.active_type IN ('1',
'2',
'4')
AND t2.first_channel_source_type NOT IN ('yqxiu1',
'yqxiu2',
'yqxiu3',
'yqxiu4',
'yqxiu5',
'mxyc1',
'mxyc2',
'mxyc3' ,
'wanpu',
'jinshan',
'jx',
'maimai',
'zhuoyi',
'huatian',
'suopingjingling',
'mocha',
'mizhe',
'meika',
'lamabang' ,
'js-az1',
'js-az2',
'js-az3',
'js-az4',
'js-az5',
'jfq-az1',
'jfq-az2',
'jfq-az3',
'jfq-az4',
'jfq-az5',
'toufang1' ,
'toufang2',
'toufang3',
'toufang4',
'toufang5',
'toufang6',
'TF-toufang1',
'TF-toufang2',
'TF-toufang3',
'TF-toufang4' ,
'TF-toufang5',
'tf-toufang1',
'tf-toufang2',
'tf-toufang3',
'tf-toufang4',
'tf-toufang5',
'benzhan',
'promotion_aso100' ,
'promotion_qianka',
'promotion_xiaoyu',
'promotion_dianru',
'promotion_malioaso',
'promotion_malioaso-shequ' ,
'promotion_shike',
'promotion_julang_jl03',
'promotion_zuimei')
AND t2.first_channel_source_type NOT LIKE 'promotion\\_jf\\_%'
""".format(ACTION_REG, CONTENT_TYPE, start, end)
print(sql)
return sql
def connectDoris(spark, table):
return spark.read \
.format("jdbc") \
.option("driver", "com.mysql.jdbc.Driver") \
.option("url", "jdbc:mysql://172.16.30.136:3306/doris_prod") \
.option("dbtable", table) \
.option("user", "doris") \
.option("password", "o5gbA27hXHHm") \
.load()
def get_spark(appName):
sparkConf = SparkConf()
sparkConf.set("spark.sql.crossJoin.enabled", True)
sparkConf.set("spark.debug.maxToStringFields", "100")
sparkConf.set("spark.tispark.plan.allow_index_double_read", False)
sparkConf.set("spark.tispark.plan.allow_index_read", True)
sparkConf.set("spark.hive.mapred.supports.subdirectories", True)
sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True)
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("mapreduce.output.fileoutputformat.compress", False)
sparkConf.set("mapreduce.map.output.compress", False)
spark = (SparkSession
.builder
.config(conf=sparkConf)
.appName(appName)
.enableHiveSupport()
.getOrCreate())
return spark
def init_es_query():
q = {
"_source": {
"includes": []
},
"query": {
"bool": {
"must": [{"term": {"is_online": True}}],
"must_not": [],
"should": []
}
}
}
return q
def parseSource(_source):
id = str(_source.setdefault("id", -1))
discount = _source.setdefault("discount", 0)
case_count = _source.setdefault("case_count", 0)
sales_count = _source.setdefault("sales_count", 0)
service_type = str(_source.setdefault("service_type", -1))
second_demands = ','.join(_source.setdefault("second_demands", ["-1"]))
second_solutions = ','.join(_source.setdefault("second_solutions", ["-1"]))
second_positions = ','.join(_source.setdefault("second_positions", ["-1"]))
tags_v3 = ','.join(_source.setdefault("tags_v3", ["-1"]))
# sku
sku_list = _source.setdefault("sku_list", [])
sku_tags_list = []
sku_show_tags_list = []
sku_price_list = []
for sku in sku_list:
sku_tags_list += sku.setdefault("sku_tags", [])
# sku_tags_list += sku.setdefault("sku_tags_id",[])
sku_show_tags_list.append(sku.setdefault("show_project_type_name", ""))
price = sku.setdefault("price", 0.0)
if price > 0:
sku_price_list.append(price)
# sku_tags = ",".join([str(i) for i in sku_tags_list]) if len(sku_tags_list) > 0 else "-1"
# sku_show_tags = ",".join(sku_show_tags_list) if len(sku_show_tags_list) > 0 else "-1"
sku_price = min(sku_price_list) if len(sku_price_list) > 0 else 0.0
# merchant_id
merchant_id = str(_source.setdefault("merchant_id", "-1"))
# doctor_type id famous_doctor
doctor = _source.setdefault("doctor", {})
doctor_type = str(doctor.setdefault("doctor_type", "-1"))
doctor_id = str(doctor.setdefault("id", "-1"))
doctor_famous = str(int(doctor.setdefault("famous_doctor", False)))
# hospital id city_tag_id hospital_type is_high_quality
hospital = doctor.setdefault("hospital", {})
hospital_id = str(hospital.setdefault("id", "-1"))
hospital_city_tag_id = str(hospital.setdefault("city_tag_id", -1))
hospital_type = str(hospital.setdefault("hospital_type", "-1"))
hospital_is_high_quality = str(int(hospital.setdefault("is_high_quality", False)))
data = [id,
discount,
case_count,
sales_count,
service_type,
merchant_id,
doctor_type,
doctor_id,
doctor_famous,
hospital_id,
hospital_city_tag_id,
hospital_type,
hospital_is_high_quality,
second_demands,
second_solutions,
second_positions,
tags_v3,
# sku_show_tags,
sku_price
]
return data
# es中获取特征
def get_service_feature_df():
es_columns = ["id", "discount", "sales_count", "doctor", "case_count", "service_type", "merchant_id",
"second_demands", "second_solutions", "second_positions", "sku_list", "tags_v3"]
query = init_es_query()
query["_source"]["includes"] = es_columns
print(json.dumps(query), flush=True)
es_cli = getEsConn()
scan_re = scan(client=es_cli, index=ES_INDEX, query=query, scroll='3m')
datas = []
for res in scan_re:
_source = res['_source']
data = parseSource(_source)
datas.append(data)
print("item size:", len(datas))
itemColumns = ['id', 'discount', 'case_count', 'sales_count', 'service_type', 'merchant_id',
'doctor_type', 'doctor_id', 'doctor_famous', 'hospital_id', 'hospital_city_tag_id', 'hospital_type',
'hospital_is_high_quality', 'second_demands', 'second_solutions', 'second_positions',
'tags_v3', 'sku_price']
# 'sku_tags','sku_show_tags','sku_price']
df = pd.DataFrame(datas, columns=itemColumns)
return df
def addDays(n, format="%Y%m%d"):
return (date.today() + timedelta(days=n)).strftime(format)
if __name__ == '__main__':
start = time.time()
# 入参
trainDays = int(sys.argv[1])
print('trainDays:{}'.format(trainDays), flush=True)
endDay = addDays(0)
startDay = addDays(-int(trainDays))
print("train_data start:{} end:{}".format(startDay, endDay))
spark = get_spark("service_feature_csv_export")
spark.sparkContext.setLogLevel("ERROR")
itemDF = get_service_feature_df()
print(itemDF.columns)
print(itemDF.head(10))
# 行为数据
clickSql = getClickSql(startDay, endDay)
expSql = getExposureSql(startDay, endDay)
clickDF = spark.sql(clickSql)
expDF = spark.sql(expSql)
# ratingDF = samplesNegAndUnion(clickDF,expDF)
ratingDF = clickDF.union(expDF)
ratingDF = ratingDF.withColumnRenamed("time_stamp", "timestamp") \
.withColumnRenamed("device_id", "userid") \
.withColumnRenamed("card_id", "item_id") \
.withColumnRenamed("page_stay", "rating") \
.withColumnRenamed("os", "user_os") \
.withColumn("user_city_id", F.when(F.col("user_city_id").isNull(), "-1").otherwise(F.col("user_city_id"))) \
.withColumn("timestamp", F.col("timestamp").cast("long"))
print(ratingDF.columns)
print(ratingDF.show(10, truncate=False))
print("添加label...")
ratingSamplesWithLabel = addSampleLabel(ratingDF)
df = ratingSamplesWithLabel.toPandas()
df = pd.DataFrame(df)
posCount = df.loc[df["label"] == 1]["label"].count()
negCount = df.loc[df["label"] == 0]["label"].count()
print("pos size:" + str(posCount), "neg size:" + str(negCount))
itemDF = get_service_feature_df()
print(itemDF.columns)
print(itemDF.head(10))
# itemDF.to_csv("/tmp/service_{}.csv".format(endDay))
# df.to_csv("/tmp/service_train_{}.csv".format(endDay))
# 数据字典
dataVocab = {}
multiVocab = {}
print("处理item特征...")
timestmp1 = int(round(time.time()))
itemDF = addItemFeatures(itemDF, dataVocab, multiVocab)
timestmp2 = int(round(time.time()))
print("处理item特征, 耗时s:{}".format(timestmp2 - timestmp1))
print("multiVocab:")
for k, v in multiVocab.items():
print(k, len(v))
print("dataVocab:")
for k, v in dataVocab.items():
print(k, len(v))
itemDF_spark = spark.createDataFrame(itemDF)
itemDF_spark.printSchema()
itemDF_spark.show(10, truncate=False)
# item统计特征处理
itemStaticDF = addItemStaticFeatures(ratingSamplesWithLabel, itemDF_spark, dataVocab)
# 统计数据处理
# ratingSamplesWithLabel = addStaticsFeatures(ratingSamplesWithLabel,dataVocab)
samples = ratingSamplesWithLabel.join(itemStaticDF, on=['item_id'], how='inner')
print("处理user特征...")
samplesWithUserFeatures = addUserFeatures(samples, dataVocab, multiVocab)
timestmp3 = int(round(time.time()))
print("处理user特征, 耗时s:{}".format(timestmp3 - timestmp2))
#
# user columns
user_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("user")]
print("collect feature for user:{}".format(str(user_columns)))
# item columns
item_columns = [c for c in itemStaticDF.columns if c.startswith("item")]
print("collect feature for item:{}".format(str(item_columns)))
# model columns
print("model columns to redis...")
model_columns = user_columns + item_columns
featureColumnsToRedis(model_columns)
print("数据字典save...")
print("dataVocab:", str(dataVocab.keys()))
vocab_path = "../vocab/{}_vocab.json".format(VERSION)
dataVocabStr = json.dumps(dataVocab, ensure_ascii=False)
open(configUtils.VOCAB_PATH, mode='w', encoding='utf-8').write(dataVocabStr)
# item特征数据存入redis
itemFeaturesToRedis(itemStaticDF, FEATURE_ITEM_KEY)
timestmp6 = int(round(time.time()))
print("item feature to redis 耗时s:{}".format(timestmp6 - timestmp3))
"""特征数据存入redis======================================"""
# user特征数据存入redis
userFeaturesToRedis(samplesWithUserFeatures, user_columns, "user", FEATURE_USER_KEY)
timestmp5 = int(round(time.time()))
print("user feature to redis 耗时s:{}".format(timestmp5 - timestmp6))
"""训练数据保存 ======================================"""
timestmp3 = int(round(time.time()))
train_columns = model_columns + ["label", "timestamp", "rating"]
trainSamples = samplesWithUserFeatures.select(*train_columns)
train_df = trainSamples.toPandas()
train_df = pd.DataFrame(train_df)
train_df.to_csv(DATA_PATH_TRAIN, sep="|")
timestmp4 = int(round(time.time()))
print("训练数据写入success 耗时s:{}".format(timestmp4 - timestmp3))
print("总耗时m:{}".format((timestmp4 - start) / 60))
spark.stop()