Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
00a38405
Commit
00a38405
authored
Dec 31, 2021
by
宋柯
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
模型上线
parent
e350d105
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
28 deletions
+15
-28
featureEngSk.py
spark/featureEngSk.py
+15
-28
No files found.
spark/featureEngSk.py
View file @
00a38405
...
@@ -709,12 +709,7 @@ def getItemStatisticSql(start, end):
...
@@ -709,12 +709,7 @@ def getItemStatisticSql(start, end):
on t1.cl_id = t2.device_id
on t1.cl_id = t2.device_id
LEFT JOIN
LEFT JOIN
( --去除黑名单
black_device_df t3
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
on t3.device_id=t2.device_id
WHERE t3.device_id is null
WHERE t3.device_id is null
UNION
UNION
...
@@ -754,12 +749,7 @@ def getItemStatisticSql(start, end):
...
@@ -754,12 +749,7 @@ def getItemStatisticSql(start, end):
) t2
) t2
on t1.cl_id = t2.device_id
on t1.cl_id = t2.device_id
LEFT JOIN
LEFT JOIN
( --去除黑名单
black_device_df t3
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
on t3.device_id=t2.device_id
WHERE t3.device_id is null
WHERE t3.device_id is null
) T
) T
...
@@ -814,12 +804,7 @@ def getPredictItemStatisticSql(start, end):
...
@@ -814,12 +804,7 @@ def getPredictItemStatisticSql(start, end):
) t2
) t2
on t1.cl_id = t2.device_id
on t1.cl_id = t2.device_id
LEFT JOIN
LEFT JOIN
( --去除黑名单
black_device_df t3
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
on t3.device_id=t2.device_id
WHERE t3.device_id is null
WHERE t3.device_id is null
UNION
UNION
...
@@ -859,12 +844,7 @@ def getPredictItemStatisticSql(start, end):
...
@@ -859,12 +844,7 @@ def getPredictItemStatisticSql(start, end):
) t2
) t2
on t1.cl_id = t2.device_id
on t1.cl_id = t2.device_id
LEFT JOIN
LEFT JOIN
( --去除黑名单
black_device_df t3
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
on t3.device_id=t2.device_id
WHERE t3.device_id is null
WHERE t3.device_id is null
) T
) T
...
@@ -1046,8 +1026,17 @@ def get_click_exp_start_end_time(trainDays):
...
@@ -1046,8 +1026,17 @@ def get_click_exp_start_end_time(trainDays):
def
get_and_save_card_feature
(
itemEsFeatureDF
,
predictClickStaticFeatures
,
predictExpStaticFeatures
,
fields_na_value_dict
):
def
get_and_save_card_feature
(
itemEsFeatureDF
,
predictClickStaticFeatures
,
predictExpStaticFeatures
,
fields_na_value_dict
):
itemFeature
=
itemEsFeatureDF
.
join
(
predictClickStaticFeatures
,
on
=
'card_id'
,
how
=
'left'
)
.
join
(
predictExpStaticFeatures
,
on
=
'card_id'
,
how
=
'left'
)
itemFeature
=
itemEsFeatureDF
.
join
(
predictClickStaticFeatures
,
on
=
'card_id'
,
how
=
'left'
)
.
join
(
predictExpStaticFeatures
,
on
=
'card_id'
,
how
=
'left'
)
itemFeature
=
itemFeature
.
na
.
fill
(
fields_na_value_dict
)
fields
=
[
field
.
name
for
field
in
itemFeature
.
schema
.
fields
]
columns_used
=
list
(
filter
(
lambda
c
:
c
.
startswith
(
'ITEM_'
),
fields
))
for
k
in
fields_na_value_dict
:
if
k
not
in
columns_used
:
fields_na_value_dict
.
pop
(
k
)
itemFeature
.
printSchema
()
itemFeature
.
printSchema
()
print
(
'columns_used:'
,
columns_used
)
print
(
'fields_na_value_dict:'
,
fields_na_value_dict
)
itemFeature
=
itemFeature
.
na
.
fill
(
fields_na_value_dict
)
itemFeatureDF
=
itemFeature
.
toPandas
()
itemFeatureDF
=
itemFeature
.
toPandas
()
conn
=
getRedisConn
()
conn
=
getRedisConn
()
BATCH
=
5000
BATCH
=
5000
...
@@ -1056,8 +1045,6 @@ def get_and_save_card_feature(itemEsFeatureDF, predictClickStaticFeatures, predi
...
@@ -1056,8 +1045,6 @@ def get_and_save_card_feature(itemEsFeatureDF, predictClickStaticFeatures, predi
row
=
row
[
1
]
row
=
row
[
1
]
return
'|'
.
join
(
row
[
columns_used
]
.
astype
(
str
))
return
'|'
.
join
(
row
[
columns_used
]
.
astype
(
str
))
columns_used
=
list
(
filter
(
lambda
c
:
c
.
startswith
(
'ITEM_'
),
list
(
itemFeatureDF
.
columns
)))
print
(
'columns_used: '
,
columns_used
)
conn
.
delete
(
Key_TMP
)
conn
.
delete
(
Key_TMP
)
for
start
in
range
(
0
,
len
(
itemFeatureDF
),
BATCH
):
for
start
in
range
(
0
,
len
(
itemFeatureDF
),
BATCH
):
conn
.
hmset
(
Key_TMP
,
{
row
[
1
][
'card_id'
]:
concat_service_feature
(
row
)
for
row
in
itemFeatureDF
.
iloc
[
start
:
start
+
BATCH
]
.
iterrows
()})
conn
.
hmset
(
Key_TMP
,
{
row
[
1
][
'card_id'
]:
concat_service_feature
(
row
)
for
row
in
itemFeatureDF
.
iloc
[
start
:
start
+
BATCH
]
.
iterrows
()})
...
@@ -1113,7 +1100,7 @@ def get_and_save_device_feature(spark, fields_na_value_dict, days = 180):
...
@@ -1113,7 +1100,7 @@ def get_and_save_device_feature(spark, fields_na_value_dict, days = 180):
print
(
sql
)
print
(
sql
)
device_feature_df
=
spark
.
sql
(
sql
)
device_feature_df
=
spark
.
sql
(
sql
)
device_feature_df
=
device_feature_df
.
na
.
fill
(
fields_na_value_dict
)
device_feature_df
=
device_feature_df
.
na
.
fill
(
{
'os'
:
'-1'
}
)
device_feature_df
.
printSchema
()
device_feature_df
.
printSchema
()
device_feature_df
=
device_feature_df
.
toPandas
()
device_feature_df
=
device_feature_df
.
toPandas
()
conn
=
getRedisConn
()
conn
=
getRedisConn
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment