Commit 240e771c authored by 宋柯's avatar 宋柯

模型上线

parent e95dcc57
source /srv/envs/serviceRec/bin/activate
python_os=/srv/envs/serviceRec/bin/python
path=/srv/apps/serviceRec
day_count=$1
spark_mode=$2
trainDays=$1
itemStatisticStartDays=$2
spark_mode=$3
content_type="service"
pythonFile=${path}/spark/featureEng.py
pythonFile=${path}/spark/featureEngSk.py
#log_file=~/${content_type}_feature_csv_export.log
/opt/hadoop/bin/hdfs dfs -rmr /${content_type}_feature_v1_train
/opt/hadoop/bin/hdfs dfs -rmr /${content_type}_feature_v1_test
if [ -n "${spark_mode}" ]; then
/opt/spark/bin/spark-submit --master local[4] --deploy-mode client --driver-memory 8g --executor-memory 2g --executor-cores 1 --num-executors 4 --conf spark.pyspark.python=${python_os} --conf spark.default.parallelism=100 --conf spark.storage.memoryFraction=0.5 --conf spark.shuffle.memoryFraction=0.3 --conf spark.locality.wait=0 --jars /srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar ${pythonFile} $day_count
/opt/spark/bin/spark-submit --master local[8] --deploy-mode client --driver-memory 16g --executor-memory 2g --executor-cores 1 --num-executors 4 --conf spark.pyspark.python=${python_os} --conf spark.default.parallelism=100 --conf spark.storage.memoryFraction=0.5 --conf spark.shuffle.memoryFraction=0.3 --conf spark.locality.wait=0 --jars /srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar ${pythonFile} $trainDays $itemStatisticStartDays
else
/opt/spark/bin/spark-submit --master yarn --deploy-mode client --queue root.strategy --driver-memory 8g --executor-memory 2g --executor-cores 1 --num-executors 8 --conf spark.pyspark.python=${python_os} --conf spark.default.parallelism=100 --conf spark.storage.memoryFraction=0.5 --conf spark.shuffle.memoryFraction=0.3 --conf spark.locality.wait=0 --jars /srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar ${pythonFile} $day_count
/opt/spark/bin/spark-submit --master yarn --deploy-mode client --queue root.strategy --driver-memory 8g --executor-memory 2g --executor-cores 1 --num-executors 8 --conf spark.pyspark.python=${python_os} --conf spark.default.parallelism=100 --conf spark.storage.memoryFraction=0.5 --conf spark.shuffle.memoryFraction=0.3 --conf spark.locality.wait=0 --jars /srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar ${pythonFile} $trainDays $itemStatisticStartDays
fi
#/opt/spark/bin/spark-submit --master local[4] --deploy-mode client --driver-memory 8g --executor-memory 2g --executor-cores 1 --num-executors 4 --conf spark.pyspark.python=/srv/envs/serviceRec/bin/python --conf spark.default.parallelism=100 --conf spark.storage.memoryFraction=0.5 --conf spark.shuffle.memoryFraction=0.3 --conf spark.locality.wait=0 --jars /srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar ${pythonFile} $day_count
......
cd /srv/apps/tensorServing_models/
cd /data/files/wideAndDeep/tensorServing_models/
fileNum=`ls service/|wc -l`
function pushModel() {
#文件打包
......
cd /srv/apps/tensorServing_models && rm -rf service_copy && mv service service_copy && mkdir service
cd /data/files/wideAndDeep/tensorServing_models && rm -rf service_copy && mv service service_copy && mkdir service
source /srv/envs/serviceRec/bin/activate
python /srv/apps/serviceRec/train/train_service.py > /srv/apps/serviceRec/logs/train_service_log.log
\ No newline at end of file
python /srv/apps/serviceRec/train/train_service_sk_tf2_distibute.py > /srv/apps/serviceRec/logs/train_service_log.log
\ No newline at end of file
import redis
import sys
import os
import json
def getRedisConn():
pool = redis.ConnectionPool(host="172.16.50.145",password="XfkMCCdWDIU%ls$h",port=6379,db=0)
conn = redis.Redis(connection_pool=pool)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379, db=0, decode_responses = True) #test
return conn
if len(sys.argv) == 2:
save_dir = sys.argv[1]
else:
save_dir = '/data/files/wideAndDeep/trainData/'
print('save_dir: ', save_dir)
if not os.path.exists(save_dir):
print('mkdir save_dir: ', save_dir)
os.makedirs(save_dir)
conn = getRedisConn()
vocab_keys = conn.lrange("strategy:all:vocab", 0, -1)
print("vocab_keys: ", vocab_keys[0])
vocab_keys = eval(vocab_keys[0])
for vocab_key in vocab_keys:
print('vocab_key: ', vocab_key)
splits = vocab_key.split(":")
field = splits[1]
filename = field + "_vocab.csv"
print('filename: ', filename)
with open(os.path.join(save_dir, filename), 'w') as f:
texts = conn.lrange(vocab_key, 0, -1)
texts = list(filter(lambda x: x != '', eval(texts[0])))
print('texts: ', len(texts))
f.write('\n'.join(texts))
os.system("hdfs dfs -getmerge /strategy/train_samples {save_dir}train_samples.csv".format(save_dir = save_dir))
os.system("hdfs dfs -getmerge /strategy/eval_samples {save_dir}eval_samples.csv".format(save_dir = save_dir))
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment