Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
240e771c
Commit
240e771c
authored
Dec 29, 2021
by
宋柯
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
模型上线
parent
e95dcc57
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
102 additions
and
40 deletions
+102
-40
featureeng_export.sh
shell/featureeng_export.sh
+6
-5
models_upload.sh
shell/models_upload.sh
+1
-1
service_train.sh
shell/service_train.sh
+3
-3
down_samples_and_vocab.py
spark/down_samples_and_vocab.py
+45
-0
train_service_sk_tf2_distibute.py
train/train_service_sk_tf2_distibute.py
+47
-31
No files found.
shell/featureeng_export.sh
View file @
240e771c
source
/srv/envs/serviceRec/bin/activate
python_os
=
/srv/envs/serviceRec/bin/python
path
=
/srv/apps/serviceRec
day_count
=
$1
spark_mode
=
$2
trainDays
=
$1
itemStatisticStartDays
=
$2
spark_mode
=
$3
content_type
=
"service"
pythonFile
=
${
path
}
/spark/featureEng.py
pythonFile
=
${
path
}
/spark/featureEng
Sk
.py
#log_file=~/${content_type}_feature_csv_export.log
/opt/hadoop/bin/hdfs dfs
-rmr
/
${
content_type
}
_feature_v1_train
/opt/hadoop/bin/hdfs dfs
-rmr
/
${
content_type
}
_feature_v1_test
if
[
-n
"
${
spark_mode
}
"
]
;
then
/opt/spark/bin/spark-submit
--master
local
[
4]
--deploy-mode
client
--driver-memory
8g
--executor-memory
2g
--executor-cores
1
--num-executors
4
--conf
spark.pyspark.python
=
${
python_os
}
--conf
spark.default.parallelism
=
100
--conf
spark.storage.memoryFraction
=
0.5
--conf
spark.shuffle.memoryFraction
=
0.3
--conf
spark.locality.wait
=
0
--jars
/srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar
${
pythonFile
}
$day_count
/opt/spark/bin/spark-submit
--master
local
[
8]
--deploy-mode
client
--driver-memory
16g
--executor-memory
2g
--executor-cores
1
--num-executors
4
--conf
spark.pyspark.python
=
${
python_os
}
--conf
spark.default.parallelism
=
100
--conf
spark.storage.memoryFraction
=
0.5
--conf
spark.shuffle.memoryFraction
=
0.3
--conf
spark.locality.wait
=
0
--jars
/srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar
${
pythonFile
}
$trainDays
$itemStatisticStartDays
else
/opt/spark/bin/spark-submit
--master
yarn
--deploy-mode
client
--queue
root.strategy
--driver-memory
8g
--executor-memory
2g
--executor-cores
1
--num-executors
8
--conf
spark.pyspark.python
=
${
python_os
}
--conf
spark.default.parallelism
=
100
--conf
spark.storage.memoryFraction
=
0.5
--conf
spark.shuffle.memoryFraction
=
0.3
--conf
spark.locality.wait
=
0
--jars
/srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar
${
pythonFile
}
$
day_count
/opt/spark/bin/spark-submit
--master
yarn
--deploy-mode
client
--queue
root.strategy
--driver-memory
8g
--executor-memory
2g
--executor-cores
1
--num-executors
8
--conf
spark.pyspark.python
=
${
python_os
}
--conf
spark.default.parallelism
=
100
--conf
spark.storage.memoryFraction
=
0.5
--conf
spark.shuffle.memoryFraction
=
0.3
--conf
spark.locality.wait
=
0
--jars
/srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar
${
pythonFile
}
$
trainDays
$itemStatisticStartDays
fi
#/opt/spark/bin/spark-submit --master local[4] --deploy-mode client --driver-memory 8g --executor-memory 2g --executor-cores 1 --num-executors 4 --conf spark.pyspark.python=/srv/envs/serviceRec/bin/python --conf spark.default.parallelism=100 --conf spark.storage.memoryFraction=0.5 --conf spark.shuffle.memoryFraction=0.3 --conf spark.locality.wait=0 --jars /srv/apps/tispark-core-2.1-SNAPSHOT-jar-with-dependencies.jar,/srv/apps/spark-connector_2.11-1.9.0-rc2.jar,/srv/apps/mysql-connector-java-5.1.38.jar ${pythonFile} $day_count
...
...
shell/models_upload.sh
View file @
240e771c
cd
/
srv/apps
/tensorServing_models/
cd
/
data/files/wideAndDeep
/tensorServing_models/
fileNum
=
`
ls
service/|wc
-l
`
function
pushModel
()
{
#文件打包
...
...
shell/service_train.sh
View file @
240e771c
cd
/
srv/apps
/tensorServing_models
&&
rm
-rf
service_copy
&&
mv
service service_copy
&&
mkdir
service
cd
/
data/files/wideAndDeep
/tensorServing_models
&&
rm
-rf
service_copy
&&
mv
service service_copy
&&
mkdir
service
source
/srv/envs/serviceRec/bin/activate
python /srv/apps/serviceRec/train/train_service.py
>
/srv/apps/serviceRec/logs/train_service_log.log
\ No newline at end of file
python /srv/apps/serviceRec/train/train_service_sk_tf2_distibute.py
>
/srv/apps/serviceRec/logs/train_service_log.log
\ No newline at end of file
spark/down_samples_and_vocab.py
0 → 100644
View file @
240e771c
import
redis
import
sys
import
os
import
json
def
getRedisConn
():
pool
=
redis
.
ConnectionPool
(
host
=
"172.16.50.145"
,
password
=
"XfkMCCdWDIU
%
ls$h"
,
port
=
6379
,
db
=
0
)
conn
=
redis
.
Redis
(
connection_pool
=
pool
)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379, db=0, decode_responses = True) #test
return
conn
if
len
(
sys
.
argv
)
==
2
:
save_dir
=
sys
.
argv
[
1
]
else
:
save_dir
=
'/data/files/wideAndDeep/trainData/'
print
(
'save_dir: '
,
save_dir
)
if
not
os
.
path
.
exists
(
save_dir
):
print
(
'mkdir save_dir: '
,
save_dir
)
os
.
makedirs
(
save_dir
)
conn
=
getRedisConn
()
vocab_keys
=
conn
.
lrange
(
"strategy:all:vocab"
,
0
,
-
1
)
print
(
"vocab_keys: "
,
vocab_keys
[
0
])
vocab_keys
=
eval
(
vocab_keys
[
0
])
for
vocab_key
in
vocab_keys
:
print
(
'vocab_key: '
,
vocab_key
)
splits
=
vocab_key
.
split
(
":"
)
field
=
splits
[
1
]
filename
=
field
+
"_vocab.csv"
print
(
'filename: '
,
filename
)
with
open
(
os
.
path
.
join
(
save_dir
,
filename
),
'w'
)
as
f
:
texts
=
conn
.
lrange
(
vocab_key
,
0
,
-
1
)
texts
=
list
(
filter
(
lambda
x
:
x
!=
''
,
eval
(
texts
[
0
])))
print
(
'texts: '
,
len
(
texts
))
f
.
write
(
'
\n
'
.
join
(
texts
))
os
.
system
(
"hdfs dfs -getmerge /strategy/train_samples {save_dir}train_samples.csv"
.
format
(
save_dir
=
save_dir
))
os
.
system
(
"hdfs dfs -getmerge /strategy/eval_samples {save_dir}eval_samples.csv"
.
format
(
save_dir
=
save_dir
))
train/train_service_sk_tf2_distibute.py
View file @
240e771c
...
...
@@ -7,8 +7,12 @@ os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
start
=
time
.
time
()
BASE_DIR
=
'/data/files/wideAndDeep/'
MODEL_BASE_DIR
=
'/data/files/wideAndDeep_tf2_dist/'
DATA_DIR
=
'/data/files/wideAndDeep/trainData/'
CHECKPOINTS_DIR
=
'/data/files/wideAndDeep/checkpoints/'
if
os
.
path
.
exists
(
CHECKPOINTS_DIR
):
os
.
rmdir
(
CHECKPOINTS_DIR
)
MODEL_BASE_DIR
=
'/data/files/wideAndDeep/tensorServing_models/service'
def
input_fn
(
csv_path
,
epoch
,
shuffle
,
batch_size
):
dataset
=
tf
.
data
.
TextLineDataset
(
csv_path
)
...
...
@@ -110,30 +114,30 @@ ITEM_NUMERIC_case_count_fc = tf.feature_column.bucketized_column(tf.feature_colu
ITEM_NUMERIC_sales_count_fc
=
tf
.
feature_column
.
bucketized_column
(
tf
.
feature_column
.
numeric_column
(
'ITEM_NUMERIC_sales_count'
),
boundaries
)
ITEM_NUMERIC_sku_price_fc
=
tf
.
feature_column
.
bucketized_column
(
tf
.
feature_column
.
numeric_column
(
'ITEM_NUMERIC_sku_price'
),
boundaries
)
USER_CATEGORY_device_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_CATEGORY_device_id'
,
BASE
_DIR
+
'USER_CATEGORY_device_id_vocab.csv'
)
USER_CATEGORY_os_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_CATEGORY_os'
,
BASE
_DIR
+
'USER_CATEGORY_os_vocab.csv'
)
USER_CATEGORY_user_city_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_CATEGORY_user_city_id'
,
BASE
_DIR
+
'USER_CATEGORY_user_city_id_vocab.csv'
)
USER_MULTI_CATEGORY__second_solutions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_second_solutions'
,
BASE
_DIR
+
'USER_MULTI_CATEGORY_second_solutions_vocab.csv'
)
USER_MULTI_CATEGORY__second_positions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_second_positions'
,
BASE
_DIR
+
'USER_MULTI_CATEGORY_second_positions_vocab.csv'
)
USER_MULTI_CATEGORY__second_demands_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_second_demands'
,
BASE
_DIR
+
'USER_MULTI_CATEGORY_second_demands_vocab.csv'
)
USER_MULTI_CATEGORY__projects_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_projects'
,
BASE
_DIR
+
'USER_MULTI_CATEGORY_projects_vocab.csv'
)
ITEM_CATEGORY_card_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_card_id'
,
BASE
_DIR
+
'ITEM_CATEGORY_card_id_vocab.csv'
)
ITEM_CATEGORY_service_type_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_service_type'
,
BASE
_DIR
+
'ITEM_CATEGORY_service_type_vocab.csv'
)
ITEM_CATEGORY_merchant_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_merchant_id'
,
BASE
_DIR
+
'ITEM_CATEGORY_merchant_id_vocab.csv'
)
ITEM_CATEGORY_doctor_type_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_doctor_type'
,
BASE
_DIR
+
'ITEM_CATEGORY_doctor_type_vocab.csv'
)
ITEM_CATEGORY_doctor_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_doctor_id'
,
BASE
_DIR
+
'ITEM_CATEGORY_doctor_id_vocab.csv'
)
ITEM_CATEGORY_doctor_famous_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_doctor_famous'
,
BASE
_DIR
+
'ITEM_CATEGORY_doctor_famous_vocab.csv'
)
ITEM_CATEGORY_hospital_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_id'
,
BASE
_DIR
+
'ITEM_CATEGORY_hospital_id_vocab.csv'
)
ITEM_CATEGORY_hospital_city_tag_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_city_tag_id'
,
BASE
_DIR
+
'ITEM_CATEGORY_hospital_city_tag_id_vocab.csv'
)
ITEM_CATEGORY_hospital_type_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_type'
,
BASE
_DIR
+
'ITEM_CATEGORY_hospital_type_vocab.csv'
)
ITEM_CATEGORY_hospital_is_high_quality_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_is_high_quality'
,
BASE
_DIR
+
'ITEM_CATEGORY_hospital_is_high_quality_vocab.csv'
)
ITEM_MULTI_CATEGORY__second_solutions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_second_solutions'
,
BASE
_DIR
+
'ITEM_MULTI_CATEGORY_second_solutions_vocab.csv'
)
ITEM_MULTI_CATEGORY__second_positions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_second_positions'
,
BASE
_DIR
+
'ITEM_MULTI_CATEGORY_second_positions_vocab.csv'
)
ITEM_MULTI_CATEGORY__second_demands_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_second_demands'
,
BASE
_DIR
+
'ITEM_MULTI_CATEGORY_second_demands_vocab.csv'
)
ITEM_MULTI_CATEGORY__projects_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_projects'
,
BASE
_DIR
+
'ITEM_MULTI_CATEGORY_projects_vocab.csv'
)
USER_CATEGORY_device_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_CATEGORY_device_id'
,
DATA
_DIR
+
'USER_CATEGORY_device_id_vocab.csv'
)
USER_CATEGORY_os_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_CATEGORY_os'
,
DATA
_DIR
+
'USER_CATEGORY_os_vocab.csv'
)
USER_CATEGORY_user_city_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_CATEGORY_user_city_id'
,
DATA
_DIR
+
'USER_CATEGORY_user_city_id_vocab.csv'
)
USER_MULTI_CATEGORY__second_solutions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_second_solutions'
,
DATA
_DIR
+
'USER_MULTI_CATEGORY_second_solutions_vocab.csv'
)
USER_MULTI_CATEGORY__second_positions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_second_positions'
,
DATA
_DIR
+
'USER_MULTI_CATEGORY_second_positions_vocab.csv'
)
USER_MULTI_CATEGORY__second_demands_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_second_demands'
,
DATA
_DIR
+
'USER_MULTI_CATEGORY_second_demands_vocab.csv'
)
USER_MULTI_CATEGORY__projects_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'USER_MULTI_CATEGORY_projects'
,
DATA
_DIR
+
'USER_MULTI_CATEGORY_projects_vocab.csv'
)
ITEM_CATEGORY_card_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_card_id'
,
DATA
_DIR
+
'ITEM_CATEGORY_card_id_vocab.csv'
)
ITEM_CATEGORY_service_type_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_service_type'
,
DATA
_DIR
+
'ITEM_CATEGORY_service_type_vocab.csv'
)
ITEM_CATEGORY_merchant_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_merchant_id'
,
DATA
_DIR
+
'ITEM_CATEGORY_merchant_id_vocab.csv'
)
ITEM_CATEGORY_doctor_type_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_doctor_type'
,
DATA
_DIR
+
'ITEM_CATEGORY_doctor_type_vocab.csv'
)
ITEM_CATEGORY_doctor_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_doctor_id'
,
DATA
_DIR
+
'ITEM_CATEGORY_doctor_id_vocab.csv'
)
ITEM_CATEGORY_doctor_famous_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_doctor_famous'
,
DATA
_DIR
+
'ITEM_CATEGORY_doctor_famous_vocab.csv'
)
ITEM_CATEGORY_hospital_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_id'
,
DATA
_DIR
+
'ITEM_CATEGORY_hospital_id_vocab.csv'
)
ITEM_CATEGORY_hospital_city_tag_id_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_city_tag_id'
,
DATA
_DIR
+
'ITEM_CATEGORY_hospital_city_tag_id_vocab.csv'
)
ITEM_CATEGORY_hospital_type_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_type'
,
DATA
_DIR
+
'ITEM_CATEGORY_hospital_type_vocab.csv'
)
ITEM_CATEGORY_hospital_is_high_quality_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_CATEGORY_hospital_is_high_quality'
,
DATA
_DIR
+
'ITEM_CATEGORY_hospital_is_high_quality_vocab.csv'
)
ITEM_MULTI_CATEGORY__second_solutions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_second_solutions'
,
DATA
_DIR
+
'ITEM_MULTI_CATEGORY_second_solutions_vocab.csv'
)
ITEM_MULTI_CATEGORY__second_positions_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_second_positions'
,
DATA
_DIR
+
'ITEM_MULTI_CATEGORY_second_positions_vocab.csv'
)
ITEM_MULTI_CATEGORY__second_demands_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_second_demands'
,
DATA
_DIR
+
'ITEM_MULTI_CATEGORY_second_demands_vocab.csv'
)
ITEM_MULTI_CATEGORY__projects_fc
=
tf
.
feature_column
.
categorical_column_with_vocabulary_file
(
'ITEM_MULTI_CATEGORY_projects'
,
DATA
_DIR
+
'ITEM_MULTI_CATEGORY_projects_vocab.csv'
)
def
embedding_fc
(
categorical_column
,
dim
):
return
tf
.
feature_column
.
embedding_column
(
categorical_column
,
dim
)
...
...
@@ -220,7 +224,7 @@ config = tf.estimator.RunConfig(save_checkpoints_steps = 3000, train_distribute
# config = tf.estimator.RunConfig(save_checkpoints_steps = 3000, session_config = session_config)
wideAndDeepModel
=
tf
.
estimator
.
DNNLinearCombinedClassifier
(
model_dir
=
MODEL_BASE_DIR
+
'model_csv'
,
wideAndDeepModel
=
tf
.
estimator
.
DNNLinearCombinedClassifier
(
model_dir
=
CHECKPOINTS_DIR
,
linear_feature_columns
=
linear_feature_columns
,
dnn_feature_columns
=
dnn_feature_columns
,
dnn_hidden_units
=
[
128
,
32
],
...
...
@@ -229,11 +233,11 @@ wideAndDeepModel = tf.estimator.DNNLinearCombinedClassifier(model_dir = MODEL_BA
# early_stopping = tf.contrib.estimator.stop_if_no_decrease_hook(wideAndDeepModel, eval_dir = wideAndDeepModel.eval_dir(), metric_name='auc', max_steps_without_decrease=1000, min_steps = 100)
early_stopping
=
tf
.
estimator
.
experimental
.
stop_if_no_increase_hook
(
wideAndDeepModel
,
'auc'
,
1000
,
eval_dir
=
wideAndDeepModel
.
eval_dir
(),
min_steps
=
1000
,
run_every_secs
=
None
,
run_every_steps
=
3000
)
early_stopping
=
tf
.
estimator
.
experimental
.
stop_if_no_increase_hook
(
wideAndDeepModel
,
'auc'
,
5
,
eval_dir
=
wideAndDeepModel
.
eval_dir
(),
min_steps
=
1000
,
run_every_secs
=
None
,
run_every_steps
=
3000
)
hooks
=
[
early_stopping
]
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
input_fn
(
BASE
_DIR
+
'train_samples.csv'
,
100
,
True
,
2048
),
hooks
=
hooks
)
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
input_fn
(
DATA
_DIR
+
'train_samples.csv'
,
100
,
True
,
2048
),
hooks
=
hooks
)
serving_feature_spec
=
tf
.
feature_column
.
make_parse_example_spec
(
linear_feature_columns
+
dnn_feature_columns
)
...
...
@@ -247,7 +251,7 @@ exporter = tf.estimator.BestExporter(
serving_input_receiver_fn
=
serving_input_receiver_fn
,
exports_to_keep
=
3
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
input_fn
(
BASE
_DIR
+
'eval_samples.csv'
,
1
,
False
,
2
**
15
),
steps
=
None
,
throttle_secs
=
120
,
exporters
=
exporter
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
input_fn
(
DATA
_DIR
+
'eval_samples.csv'
,
1
,
False
,
2
**
15
),
steps
=
None
,
throttle_secs
=
120
,
exporters
=
exporter
)
# def my_auc(labels, predictions):
# return {'auc_pr_careful_interpolation': tf.metrics.auc(labels, predictions['logistic'], curve='ROC',
...
...
@@ -257,6 +261,17 @@ eval_spec = tf.estimator.EvalSpec(input_fn = lambda: input_fn(BASE_DIR + 'eval_s
tf
.
estimator
.
train_and_evaluate
(
wideAndDeepModel
,
train_spec
,
eval_spec
)
wideAndDeepModel
.
evaluate
(
lambda
:
input_fn
(
BASE_DIR
+
'eval_samples.csv'
,
1
,
False
,
2
**
15
))
wideAndDeepModel
.
evaluate
(
lambda
:
input_fn
(
DATA_DIR
+
'eval_samples.csv'
,
1
,
False
,
2
**
15
))
wideAndDeepModel
.
export_saved_model
(
MODEL_BASE_DIR
,
serving_input_receiver_fn
,
as_text
=
False
)
filenames
=
os
.
listdir
(
MODEL_BASE_DIR
)
filename
=
filenames
[
0
]
from
datetime
import
date
filename_
=
date
.
fromtimestamp
(
int
(
filename
))
.
strftime
(
'
%
Y
%
m
%
d'
)
os
.
remove
(
os
.
path
.
join
(
MODEL_BASE_DIR
,
filename
),
os
.
path
.
join
(
MODEL_BASE_DIR
,
filename_
))
print
(
"训练耗时: {}s"
.
format
(
time
.
time
()
-
start
))
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment