Commit 33149f28 authored by 宋柯's avatar 宋柯

模型上线

parent ffa71992
......@@ -1053,16 +1053,18 @@ def get_and_save_card_feature(itemEsFeatureDF, predictClickStaticFeatures, predi
itemFeatureDF = itemFeature.toPandas()
conn = getRedisConn()
BATCH = 5000
Key = 'strategy:model:rank:widedeep:service:feature'
Key_TMP = 'strategy:model:rank:widedeep:service:feature:tmp'
def concat_service_feature(row):
row = row[1]
return '|'.join(row[columns_used].astype(str))
columns_used = list(filter(lambda c: c.startswith('ITEM_'), list(itemFeatureDF.columns)))
print('columns_used: ', columns_used)
conn.delete(Key_TMP)
for start in range(0, len(itemFeatureDF), BATCH):
conn.hmset(Key, {row[1]['card_id']: concat_service_feature(row) for row in itemFeatureDF.iloc[start: start + BATCH].iterrows()})
conn.hmset(Key_TMP, {row[1]['card_id']: concat_service_feature(row) for row in itemFeatureDF.iloc[start: start + BATCH].iterrows()})
Key = 'strategy:model:rank:widedeep:service:feature'
conn.rename(Key_TMP, Key)
def get_and_save_device_feature(spark, fields_na_value_dict, days = 180):
......@@ -1121,10 +1123,12 @@ def get_and_save_device_feature(spark, fields_na_value_dict, days = 180):
device_feature_df = device_feature_df.na.fill(fields_na_value_dict)
conn = getRedisConn()
BATCH = 5000
Key = 'strategy:model:rank:widedeep:device:feature'
Key_TMP = 'strategy:model:rank:widedeep:device:feature:tmp'
conn.delete(Key_TMP)
for start in range(0, len(device_feature_df), BATCH):
conn.hmset(Key, {row[1]['device_id']: row[1]['os'] for row in device_feature_df.iloc[start: start + BATCH].iterrows()})
conn.hmset(Key_TMP, {row[1]['device_id']: row[1]['os'] for row in device_feature_df.iloc[start: start + BATCH].iterrows()})
Key = 'strategy:model:rank:widedeep:device:feature'
conn.rename(Key_TMP, Key)
def get_click_exp_rating_df(trainDays, spark):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment