Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
4777e78a
Commit
4777e78a
authored
Jun 23, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
特征工程优化
parent
68476ed0
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
228 additions
and
0 deletions
+228
-0
train_service2.py
train/train_service2.py
+228
-0
No files found.
train/train_service2.py
0 → 100644
View file @
4777e78a
import
tensorflow
as
tf
import
json
import
pandas
as
pd
import
time
import
sys
import
os
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
import
utils.connUtils
as
connUtils
import
utils.configUtils
as
configUtils
ITEM_NUMBER_COLUMNS
=
[
"item_"
+
c
for
c
in
[
"smart_rank2"
]]
embedding_columns
=
[
"itemid"
,
"userid"
]
+
[
"item_"
+
c
for
c
in
[
"doctor_id"
,
"hospital_id"
]]
multi_columns
=
[
"tags_v3"
,
"first_demands"
,
"second_demands"
,
"first_solutions"
,
"second_solutions"
,
"first_positions"
,
"second_positions"
]
one_hot_columns
=
[
"item_"
+
c
for
c
in
[
"service_type"
,
"doctor_type"
,
"doctor_famous"
,
"hospital_city_tag_id"
,
"hospital_type"
,
"hospital_is_high_quality"
]]
# history_columns = ["userRatedHistory"]
# 数据加载
# data_path_train = "/Users/zhigangzheng/Desktop/work/guoyu/service_sort/train/part-00000-a61205d1-ad4e-4fa7-895d-ad8db41189e6-c000.csv"
# data_path_test = "/Users/zhigangzheng/Desktop/work/guoyu/service_sort/train/part-00000-a61205d1-ad4e-4fa7-895d-ad8db41189e6-c000.csv"
VERSION
=
configUtils
.
SERVICE_VERSION
trainDay
=
time
.
strftime
(
"
%
Y
%
m
%
d
%
H"
,
time
.
localtime
())
data_path_train
=
"/data/files/service_feature_{}_train.csv"
.
format
(
VERSION
)
data_path_test
=
"/data/files/service_feature_{}_test.csv"
.
format
(
VERSION
)
model_file
=
"/srv/apps/tensorServing_models/test/service/"
+
trainDay
def
is_float
(
s
):
try
:
float
(
s
)
return
True
except
ValueError
:
return
False
#数据字典
def
getDataVocabFromRedis
(
version
):
conn
=
connUtils
.
getRedisConn
()
key
=
"Strategy:rec:vocab:service:"
+
version
dataVocabStr
=
conn
.
get
(
key
)
if
dataVocabStr
:
dataVocab
=
json
.
loads
(
str
(
dataVocabStr
,
encoding
=
"utf-8"
),
encoding
=
'utf-8'
)
print
(
"-----data_vocab-----"
)
for
k
,
v
in
dataVocab
.
items
():
print
(
k
,
len
(
v
))
else
:
dataVocab
=
None
return
dataVocab
# 数据类型转换
def
csvTypeConvert
(
columns
,
df
,
data_vocab
):
df
[
"label"
]
=
df
[
"label"
]
.
astype
(
"int"
)
for
k
in
columns
:
# 离散na值填充
if
data_vocab
.
get
(
k
):
df
[
k
]
=
df
[
k
]
.
fillna
(
"-1"
)
df
[
k
]
=
df
[
k
]
.
astype
(
"string"
)
elif
k
!=
"label"
:
# df[k] = df[k].map(lambda x:x if is_float(x) else 0)
df
[
k
]
=
df
[
k
]
.
fillna
(
0
)
df
[
k
]
=
df
[
k
]
.
astype
(
"float"
)
# print(df.dtypes)
return
df
def
loadData
(
data_path
):
print
(
"读取数据..."
)
timestmp1
=
int
(
round
(
time
.
time
()
*
1000
))
df
=
pd
.
read_csv
(
data_path
,
sep
=
"|"
)
timestmp2
=
int
(
round
(
time
.
time
()
*
1000
))
print
(
"读取数据耗时ms:{}"
.
format
(
timestmp2
-
timestmp1
))
return
df
def
getDataSet
(
df
,
shuffleSize
=
10000
,
batchSize
=
128
):
# print(df.dtypes)
labels
=
df
.
pop
(
'label'
)
dataSet
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
dict
(
df
),
labels
))
.
shuffle
(
shuffleSize
)
.
batch
(
batchSize
)
return
dataSet
def
getTrainColumns
(
train_columns
,
data_vocab
):
emb_columns
=
[]
number_columns
=
[]
oneHot_columns
=
[]
dataColumns
=
[]
inputs
=
{}
# 离散特征
for
feature
in
train_columns
:
if
data_vocab
.
get
(
feature
):
if
feature
.
count
(
"__"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
5
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
one_hot_columns
or
feature
.
count
(
"Bucket"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
# col = tf.feature_column.indicator_column(cat_col)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
3
)
oneHot_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
else
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
ITEM_NUMBER_COLUMNS
:
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
number_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
return
emb_columns
,
number_columns
,
oneHot_columns
,
dataColumns
,
inputs
def
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_dataset
):
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
+
oneHot_columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
# concat_layer = tf.keras.layers.concatenate([wide, deep], axis=1)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.5
)(
deep
)
output_layer
=
tf
.
keras
.
layers
.
Dense
(
1
,
activation
=
'sigmoid'
)(
deep
)
model
=
tf
.
keras
.
Model
(
inputs
,
output_layer
)
# compile the model, set loss function, optimizer and evaluation metrics
model
.
compile
(
loss
=
'mse'
,
optimizer
=
'adam'
,
metrics
=
[
'accuracy'
,
tf
.
keras
.
metrics
.
AUC
(
curve
=
'ROC'
),
tf
.
keras
.
metrics
.
AUC
(
curve
=
'PR'
)])
# train the model
print
(
"train start..."
)
model
.
fit
(
train_dataset
,
epochs
=
5
)
print
(
"train end..."
)
print
(
"train save..."
)
model
.
save
(
model_file
,
include_optimizer
=
False
,
save_format
=
'tf'
)
return
model
def
evaluate
(
model
,
test_dataset
):
if
not
model
:
print
(
"加载模型中"
)
model
=
tf
.
keras
.
models
.
load_model
(
model_file
)
# evaluate the model
timestmp1
=
int
(
round
(
time
.
time
()))
print
(
"evaluate:"
)
test_loss
,
test_accuracy
,
test_roc_auc
,
test_pr_auc
=
model
.
evaluate
(
test_dataset
)
print
(
'
\n\n
Test Loss {}, Test Accuracy {}, Test ROC AUC {}, Test PR AUC {}'
.
format
(
test_loss
,
test_accuracy
,
test_roc_auc
,
test_pr_auc
))
print
(
"验证耗时s:"
,
int
(
round
(
time
.
time
()))
-
timestmp1
)
def
predict
(
model_path
,
df
):
print
(
"加载模型中..."
)
model_new
=
tf
.
keras
.
models
.
load_model
(
model_path
)
# model_new.summary()
print
(
"模型加载完成..."
)
# model = tf.keras.models.model_from_json(model.to_json)
n
=
1000
dd
=
dict
(
df
.
sample
(
n
=
n
))
for
i
in
range
(
10
):
timestmp1
=
int
(
round
(
time
.
time
()
*
1000
))
model_new
.
predict
(
dd
,
batch_size
=
10000
)
print
(
"测试样本数:{},测试耗时ms:{}"
.
format
(
n
,
int
(
round
(
time
.
time
()
*
1000
))
-
timestmp1
))
if
__name__
==
'__main__'
:
curTime
=
time
.
strftime
(
"
%
Y-
%
m-
%
d
%
H:
%
M:
%
S"
,
time
.
localtime
())
print
(
"train_service执行时间:{}"
.
format
(
curTime
))
# redis中加载数据字典
print
(
"redis 中加载模型字典..."
)
data_vocab
=
getDataVocabFromRedis
(
VERSION
)
assert
data_vocab
print
(
"读取数据..."
)
timestmp1
=
int
(
round
(
time
.
time
()))
df_train
=
loadData
(
data_path_train
)
# df_test = loadData(data_path_test)
timestmp2
=
int
(
round
(
time
.
time
()))
print
(
"读取数据耗时s:{}"
.
format
(
timestmp2
-
timestmp1
))
# 获取训练列
columns
=
df_train
.
columns
.
tolist
()
print
(
"原始数据列:"
)
print
(
columns
)
emb_columns
,
number_columns
,
oneHot_columns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
print
(
"训练列:"
)
print
(
datasColumns
)
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
# df_test = df_test[datasColumns + ["label"]]
trainSize
=
df_train
[
"label"
]
.
count
()
print
(
"trainSize:{}"
.
format
(
trainSize
))
# testSize = df_test["label"].count()
# print("trainSize:{},testSize{}".format(trainSize,testSize))
# 数据类型转换
df_train
=
csvTypeConvert
(
datasColumns
,
df_train
,
data_vocab
)
# df_test = csvTypeConvert(datasColumns,df_test,data_vocab)
# 获取训练数据
train_data
=
getDataSet
(
df_train
,
shuffleSize
=
trainSize
,)
# test_data = getDataSet(df_test,shuffleSize=testSize)
print
(
"train start..."
)
timestmp3
=
int
(
round
(
time
.
time
()))
model
=
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_data
)
timestmp4
=
int
(
round
(
time
.
time
()))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
# evaluate(model,test_data)
# predict(model_file,test_data)
pass
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment